Spelling suggestions: "subject:"discret elements methods"" "subject:"discrete elements methods""
1 |
Modélisation numérique des milieux granulaires immergés : initiation et propagation des avalanches dans un fluide / Numerical simulation of immersed granular materials : initiation and propagation of landslids avalanchesMutabaruka, Patrick 06 December 2013 (has links)
Les études présentées dans ce mémoire portent sur la simulation numérique et l'analyse physique des milieux granulaires immergés dans un fluide. Des développements numériques ont été réalisés pour coupler la méthode Lattice Boltzmann pour la dynamique du fluide avec la méthode de Contact Dynamics en 2D et avec la méthode Molecular Dynamics en 3D pour la dynamique des grains. Ces outils numériques ont été utilisés pour étudier l'initiation des avalanches sur un plan incliné en fonction de la compacité initiale et de l'angle d'inclinaison en 3D. Les résultats sont en bon accord quantitatif avec les expériences et ont permis de mettre en évidence la stabilisation de la pente granulaire par une pression négative du fluide interstitielle induite par la dilatance, et l'évolution spatiotemporelle des grandeurs telles que la compacité et la déformation de cisaillement. Ces évolutions dans la phase de fluage qui précède la rupture de pente ont pu être mises à l'échelle par un modèle théorique incorporant la loi de Darcy et l'effet de la dilatance sur l'angle de frottement interne. L'analyse de la texture granulaire a révélé la distorsion du réseau des contacts pendant le fluage et la saturation de l'anisotropie comme un critère de rupture. La propagation des avalanches granulaires a été étudiée dans la configuration 2D pour deux géométries différentes : 1) l'effondrement et l'étalement d'une colonne sous son propre poids, 2) l'étalement d'une pente sous l'effet d'une énergie cinétique injectée. Nous avons en particulier montré que la distance et la durée d'étalement obéissent à des lois de puissances en fonction du rapport d'aspect initial ou de l'énergie injectée. Le fluide exerce deux effets contradictoires : réduire les temps de relaxation et lubrifier les contacts. Ces effets ont été analysés dans le régime visqueux en fonction des conditions initiales et la viscosité du fluide. / By means of numerical simulations, we investigate the behavior of granular materials immersed in a fluid. Numerical developments were carried out to interface the Lattice Boltzmann Method for fluid dynamics with the Contact Dynamics method in 2D and with the Molecular Dynamics method in 3D for the simulation of the grains. Extensive simulations were applied to study the initiation of avalanches in a granular bed inclined at an angle above its angle of repose as function of the initial packing fraction and slope angle in 3D. The results are in excellent quantitative agreement with the reported experimental data, and show the stabilization of the granular bed by a negative pore overpressure induced by the dilatancy of the bed and the spatiotemporal evolution of the packing fraction and the shear deformation. The time evolution of these variables during the creeping phase before slope failure is scaled by a theoretical model accounting for darcian drag forces and the effect of dilatancy on the internal friction coefficient. We also analyzed the granular microstructure, which shows a gradual distortion of the contact network during creep at nearly a constant connectivity and the saturation of the anisotropy at failure. The runout of granular avalanches were investigated in 2D for two different configurations : 1) the collapse of a granular column under its own weight and 2) the runout of a granular pile as a result of kinetic energy supplied directly to the grains. We find power-law dependence of the resulting runout lengths and times with respect to the initial geometry or energy of the system. The time scales are shown to be consequence of two competing effects of the fluid on the grains : reducing relaxation times by viscous friction and the lubricating the contacts between grains.
|
2 |
Simulation numérique de l’écoulement et mélange granulaires par des éléments discrets ellipsoïdaux / Numerical simulation of flow and mixing granular by ellipsoidal discrete elementsTrabelsi, Brahim 12 March 2013 (has links)
Les matériaux granulaires sont omniprésents, ils se trouvent aussi bien dans la nature que dans quelques applications industrielles. Parmi les applications industrielles utilisant les matériaux granulaires, on cite le mélange des poudres dans les industries agro-alimentaires, chimiques, métallurgiques et pharmaceutiques. La caractérisation et l'étude du comportement de ces matériaux sont nécessaires pour la compréhension de plusieurs phénomènes naturels comme le mouvement des dunes et les avalanches de neige, et de processus industriels tel que l'écoulement et le mélange des grains dans un mélangeur. Le comportement varié des matériaux granulaires les rend inclassables parmi les trois états de la matière : solide, liquide et gazeux. Ceci a fait dire qu'il s'agit d'un ``quatrième état'' de la matière, situé entre solide et liquide. L'objectif de ce travail est de concevoir et de mettre en oeuvre des méthodes efficaces d'éléments discrets pour la simulation et l'analyse des processus de mélange et de ségrégation des particules ellipsoïdales dans des mélangeurs culbutants industriels tels que le mélangeur à cerceaux. Dans la DEM l'étape la plus critique en terme de temps CPU est celle de la détection et de résolution de contact. Donc pour que la DEM soit efficace il faut optimiser cette étape. On se propose de combiner le modèle du potentiel géométrique et la condition algébrique de contact entre deux ellipsoïdes proposée par Wang et al., pour l'élaboration d'un algorithme efficace de détection de contact externe entre particules ellipsoïdales. Puis de de prouver un résultat théorique et d'élaborer un algorithme pour le contact interne. D'autre part, le couplage DEM-chaîne de Markov permet de diminuer très sensiblement le temps de simulation en déterminant la matrice de transition à partir d'une simulation à courte durée puis en calculant l'état du système à l'aide du modèle de chaîne de Markov. En effet, en utilisant la théorie des matrices strictement positives et en se basant sur le théorème de Perron-Frobenius on peut approximer le nombre de transitions nécessaires pour la convergence vers un état donné. / The importance of granular mixing for many process industries dealing with powders and grains can hardly be exaggerated. For example, chemical, food, and pharmaceutical industries usually require blending different particulate materials. High-quality products ranging from polymers and pharmaceuticals to ceramics and semiconductors increasingly depend on reliable granular flow and high quality and controllable granular mixing processes. In this work we implement a discrete element method for the simulation and analysis of mixing and segregation of ellipsoidal particles inside industrial tumbling blenders. The most critical step in term of time CPU in a discrete element simulation is the detection and resolution of contact. We use the algorithm of separating plane of ellipsoids and the algebraic condition on the separation of two ellipsoid algebraic conditions for the development of an efficient contact detection algorithm for ellipsoidal particles and to prove a theoretical result and a new algorithm for the internal contact. However, the coupling between DEM and Marckov chain makes it possible to very appreciably decrease the simulation time by determining the transition matrix of a short time simulation then by calculating the state from the system using the model from chain from Markov. Indeed, by using the theory of the strictly positive matrices and while basing oneself on the theorem of Perron-Frobenius we can approximate the number of transitions necessary for convergence towards a given state.
|
Page generated in 0.0799 seconds