• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 40
  • 25
  • 12
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 225
  • 225
  • 225
  • 51
  • 50
  • 47
  • 46
  • 44
  • 43
  • 36
  • 31
  • 28
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Gas production from hydrate-bearing sediments:geo-mechanical implications

Jung, Jongwon 10 November 2010 (has links)
Gas hydrate consists of guest gas molecules encaged in water molecules. Methane is the most common guest molecule in natural hydrates. Methane hydrate forms under high fluid pressure and low temperature and is found in marine sediments or in permafrost region. Methane hydrate can be an energy resource (world reserves are estimated in 20,000 trillion m3 of CH4), contribute to global warming, or cause seafloor instability. Research documented in this thesis starts with an investigation of hydrate formation and growth in the pores, and the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation. Then, emphasis is placed on identifying the advantages and limitations of different gas production strategies with emphasis on a detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2. The research methodology combines experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes.
92

Discrete element simulation of elasto-plastic shock waves in high-velocity compaction

Shoaib, Muhammad January 2011 (has links)
Elasto-plastic shock waves in high-velocity compaction of spherical metal particles are the focus of this thesis which consists of four papers (A-D). The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading and adhesion at contacts. Paper A investigates the dynamic compaction of a one-dimensional chain of homogenous particles. The development of the elasto-plastic shock waves, its propagation and influence on the compaction process are examined. Simulations yield information on the contact behavior, velocity of the particle and its deformation during dynamic compaction. Effects of changing loading parameters on the compaction process are also discussed. Paper B addresses the non-homogeneity in a chain having; particles of different sizes and materials, voids between the particles and particles with/without adhesion between them. Simulations show transmission and reflection of elasto-plastic shock wave during compaction process. The particle deformation during incident and reflected shocks and particle velocity fluctuations due to voids between particles are simulated. The effects of adhesion on particles separation during unloading stage are also discussed. Paper C develops a simulation model for a high-velocity compaction process with auxiliary pistons, known as relaxation assists, in a compaction assembly. The simulation results reveals that the relaxation assists offer; smooth compaction during loading stage, prevention of  the particle separation during unloading stage and conversion of  higher kinetic energy of hammer into particles deformation.  Furthermore, the influence of various loading elements on compaction process is investigates. These results support the findings of experimental work. Paper D further extends the one-dimensional case of Paper A and B into two-dimensional assembly of particles while adding friction between particles and between particles and container walls. Three particular cases are investigated including closely packed hexagonal, loosely packed random and a non-homogenous assembly of particles of various sizes and materials. Consistent with the one-dimensional case, primary interest is the linking of particle deformation with the elasto-plastic shock wave propagation. Simulations yield information on particle deformation during shock propagation and change in overall particles compaction with the velocity of the hammer. The force exerted by particles on the container walls and rearrangement of the loosely packed particles during dynamic loading are also investigated. Finally, the effects of presence of friction and adhesion on both overall particles deformation and compaction process are simulated. / QC 20110311
93

Développement et validation d'un modèle aux éléments discrets de comportement du béton sous chargement dynamique / Development and validation of a discrete element method for modeling dynamic behaviour of concrete

Omar, Ahmad 31 March 2015 (has links)
Ce travail concerne l'analyse de la vulnérabilité des structures de protection et des ouvrages sensibles en béton soumis à des actions dynamiques sévères (impacts, explosions) dues à des risques anthropiques d'origine accidentelle ou non. L'objet est la mise au point d'outils prévisionnels de simulation capables de décrire de manière objective le comportement dynamique du béton. Pour cela, une approche numérique novatrice reposant sur la méthode des Eléments Discrets (MED) est développée. Une première partie de cette thèse concerne la simulation des essais quasi-statiques de compression et traction uniaxiales. Une loi de transfert de moment (LTM) a été introduite pour pallier au problème de fragilité en compression simple. Ensuite, la procédure d'identification des paramètres du modèle modifié a été optimisée pour bien reproduire le comportement macroscopique du béton. Enfin, le modèle a été validé en représentant correctement le comportement quasi-statique de plusieurs types de béton. La deuxième partie du travail traite la simulation des essais de traction dynamique du béton aux barres de Hopkinson. Les résultats ont montré la nécessité de prendre l'effet de vitesse de déformation dû au matériau pour bien reproduire le comportement expérimental. Ensuite, Les paramètres du modèle permettant de reproduire cet effet de vitesse ont été identifiés. Enfin, des essais avec des taux de déformation très élevés ont été simulés et les résultats numériques ont été en accord avec le comportement observé expérimentalement. / This work concerns the analysis of the vulnerability of sensitive concrete structures subjected to severe dynamic actions such as impacts due to natural hazards or human factors. The object is to develop a numerical tool that can describe objectively the dynamic behaviour of concrete. Then, a 3D discrete element method (DEM) was developed and used to perform the analysis. The first part of this thesis focuses on the simulation of quasi-static uniaxial compression and traction tests. A moment transfer law (MTL) was introduced to overcome the problem of brittle compressive behavior. Then, the identification procedure of the modified DEM model has been optimized in order to reproduce very well the macroscopic behaviour of concrete. Finally, the model has been validated by representing properly the real quasi-static behavior of different types of concrete. The second part of the study deals with the simulation of the dynamic Hopkinson traction bar tests of concrete. The results showed that a local rate effect has to be introduced to reproduce the strain rate dependency, which would then be a material-intrinsic effect. Then, the parameters of the model have been identified. Finally, simulations were run at high strain rates and showed consistent results with respect to experimental behaviour.
94

Numerical simulation of the rheological behavior of fresh concrete / Numerische Simulation des rheologischen Verhaltens von Frischbeton

Shyshko, Sergiy 22 January 2014 (has links) (PDF)
This thesis reports recent numerical investigation of the rheological behavior of fresh concrete using the Distinct Element Method (DEM). Some relevant questions of the concrete rheology e.g. the influence of the concrete composition on the rheological behavior of the fresh concrete, the experimental determination of the Bingham rheological constants as well as the use of these constants in the numerical simulation were discussed thoroughly. An important topic of the performed investigation was the development of the numerical model for fresh concrete which enables simple, fast and stable predictive simulation of different technological operations with fresh concrete. Firstly, in a literature survey, the state-of-the-art of the numerical simulation of fresh concrete was presented and critically discussed in order to show advantages and disadvantages of other methods and modeling approaches. Open (unsolved) questions were highlighted and the basis for their investigation is created within this thesis. Fundamental concepts of the rheology were then presented and the basic rheological models of viscoelastic materials were considered; the rheological behaviors of different types of concretes were presented and its influencing factors were discussed. Additionally main methods for scientific investigation and testing of the fresh concrete were shown. The test methods were critically discussed in order to select the test, which has been used as a reference experimental test for the numerical simulations. Chosen reference experimental test was the slump flow test. The slump flow test was thoroughly analyzed and an analytical solution was developed which helps to interpret the results of measurements and provides a link between rheological constants and measured quantities. In a further step an extensive experimental program was carried out in order to investigate the rheological behavior of fresh concrete and get the input data for numerical simulation. Firstly, the experiments on macrolevel were performed. Here the rheological behavior of the fresh concrete flow in different tests was investigated (slump and slump flow tests, L-Box). Further, the experiments on mesolevel with polymer on Carbopol basis and mortar were developed and performed in order to investigate the interaction between distinct particles suspended in a fluid matrix. The necessary material parameters, especially those representative of the fluid suspension micromechanical behavior, i.e. the force-displacement relationship, yield force and bond strength, were determined by these experiments. The slump flow test was used as the basic test to calibrate the model for fresh concrete (key data: slump value, slump flow diameter (for concretes with a soft consistency) and the time of spreading). Thus, the decisive phenomena of the fresh concrete flow were highlighted, control points for a contact model were selected and the initial input data for the development of the contact model was obtained. Next, the user-defined contact model was developed and implemented into the Particle Flow Code ITASCA. The contact model was completely described and its limitations discussed. Then, the set of numerical tools was developed, which enable simplified and stable numerical simulation of the fresh concrete with particular behavior, i.e. automatic generation of the concrete with given particle grading, amount of fibers and air, automatic recalculation of the micromechanical parameters of the contact model from given initial yield stress and plastic viscosity. The model was calibrated by slump flow test simulations and validated by corresponding analytical approach. Further, the role of different model parameters was investigated by simulating the slump flow test. Furthermore, for verification of the model several additional experiments were simulated, i.e. L-Box and LCPC-box test. The results of modeling were compared with experimental results and discussed in detail. All numerical simulations provide qualitatively as well as quantitatively correct results and hence adequately represent the phenomena observed in real experiments. The thesis closes with general conclusions and outlook of the work. In the future, the developed contact model and tools of the “Virtual concrete laboratory” could be modified in order to extend the potential of the laboratory to cover such properties as thixotropic behavior of fresh concrete or simulating hardening of the concrete and behavior of the hardened concrete.
95

Développement et validation d'un modèle aux éléments discrets de comportement du béton sous chargement dynamique / Development and validation of a discrete element method for modeling dynamic behaviour of concrete

Omar, Ahmad 31 March 2015 (has links)
Ce travail concerne l'analyse de la vulnérabilité des structures de protection et des ouvrages sensibles en béton soumis à des actions dynamiques sévères (impacts, explosions) dues à des risques anthropiques d'origine accidentelle ou non. L'objet est la mise au point d'outils prévisionnels de simulation capables de décrire de manière objective le comportement dynamique du béton. Pour cela, une approche numérique novatrice reposant sur la méthode des Eléments Discrets (MED) est développée. Une première partie de cette thèse concerne la simulation des essais quasi-statiques de compression et traction uniaxiales. Une loi de transfert de moment (LTM) a été introduite pour pallier au problème de fragilité en compression simple. Ensuite, la procédure d'identification des paramètres du modèle modifié a été optimisée pour bien reproduire le comportement macroscopique du béton. Enfin, le modèle a été validé en représentant correctement le comportement quasi-statique de plusieurs types de béton. La deuxième partie du travail traite la simulation des essais de traction dynamique du béton aux barres de Hopkinson. Les résultats ont montré la nécessité de prendre l'effet de vitesse de déformation dû au matériau pour bien reproduire le comportement expérimental. Ensuite, Les paramètres du modèle permettant de reproduire cet effet de vitesse ont été identifiés. Enfin, des essais avec des taux de déformation très élevés ont été simulés et les résultats numériques ont été en accord avec le comportement observé expérimentalement. / This work concerns the analysis of the vulnerability of sensitive concrete structures subjected to severe dynamic actions such as impacts due to natural hazards or human factors. The object is to develop a numerical tool that can describe objectively the dynamic behaviour of concrete. Then, a 3D discrete element method (DEM) was developed and used to perform the analysis. The first part of this thesis focuses on the simulation of quasi-static uniaxial compression and traction tests. A moment transfer law (MTL) was introduced to overcome the problem of brittle compressive behavior. Then, the identification procedure of the modified DEM model has been optimized in order to reproduce very well the macroscopic behaviour of concrete. Finally, the model has been validated by representing properly the real quasi-static behavior of different types of concrete. The second part of the study deals with the simulation of the dynamic Hopkinson traction bar tests of concrete. The results showed that a local rate effect has to be introduced to reproduce the strain rate dependency, which would then be a material-intrinsic effect. Then, the parameters of the model have been identified. Finally, simulations were run at high strain rates and showed consistent results with respect to experimental behaviour.
96

Etude de l’influence des peuplements forestiers de type taillis sur la propagation des blocs rocheux / Improving the integration of coppice forest protection in rockfall model

Toe, David 11 March 2016 (has links)
L'objectif principal de ce travail de thèse est d'améliorer la prise en compte des peuplements de taillis dans les logiciels d'analyse trajectographique.Dans un premier temps, un modèle numérique permettant de créer des peuplements virtuels de taillis à l'échelle du versant a été développé et validé sur la base d'inventaires forestiers réalisés dans des taillis.Deux modèles numériques permettant de simuler des impacts de blocs sur des franc pieds et des cépées ont été également développés en utilisant la Méthode des Éléments Discrets (MED).Ces modèles ont été calibrés par des essais d'impact sur des tiges de hêtre.Ils permettent d'intégrer l'influence du houppier et du système racinaire, de modéliser explicitement le contact entre le bloc et les tiges impactées, et d'intégrer les non-linéarités matérielles (rupture des tiges, délaminage) se développant dans le tronc au cours de l'impact.Ces travaux ont conduit à la construction d'un modèle trajectographique MED permettant de simuler la propagation d'un bloc dans une forêt de taillis à l'échelle du versant. Finalement, le rôle protecteur de différents peuplements de taillis contre l'aléa de chute de bloc a été caractérisé à l'aide de ce modèle. / This research work is dedicated to improve the integration of coppice stands in rockfall analyses.First, a model was built to create virtual coppice stands. This model was validated using field inventories in coppice stands.Two numerical models were developed to simulate impacts of blocks on single trees and coppice stools using the Discrete Elements Method (MED).These models were calibrated using laboratory impact tests on beech stems.They account for the influence of the root system and of the crown on the tree dynamic response, the explicit modeling of the contact between the block and the impacted stem and the non-linearity evolution into the trunk during impact.Finally, a DEM rockfall software was developed to model rockfall propagation in coppice stands.The protective role against rockfall hazard of different coppice stands was characterized with this model.
97

Application de la méthode des éléments discrets aux déformations finies inélastiques dans les multi-matériaux / Application of the Discrete Element Method to Finite Inelastic Strain in Multi-Materials

Gibaud, Robin 28 November 2017 (has links)
Le formage de matériaux multiphasés comprend des mécanismes complexes en lien avec la rhéologie,la morphologie et la topologie des phases.Du point de vue numérique,la modélisation de ces phénomènes en résolvant les équations aux dérivées partielles (EDP) décrivant le comportement continu des phases n'est pas trivial.En effet,de nombreuses discontinuités associées aux phases se déplacent et peuvent interagir.Ces phénomènes peuvent être conceptuellement déclicats à intégrer au modèlecontinu et coûteux en termes de calcul.Dans cette thèse,la méthode des éléments discrets (DEM) est utilisée pour modéliser phénoménologiquement les déformations finies inélastiques dans les multi-matériaux.Les lois d'interactions attractive-répulsive sont imposées à des particules fictives,dont les ré-arrangements collectifs modélisent les déformations irréversibles de milieux continus.Le comportement numérique des empilements de particules est choisi pourreproduire des traits caractéristiques de la viscoplasticité parfaite etisochore:contrainte d'écoulement,sensibilité à la vitesse de déformation,conservation du volume.Les résultats d'essais de compression de bi-matériaux simples,simulés avec la DEM,sont comparés à la méthode des éléments finis (FEM) et sont en bon accord.Le modèle est entendu pour pouvoir supporter des sollicitations de traction.Une méthode de détection de contacts et d'auto-contacts d'objets physiques estproposée,basée sur l'approximation locale des surfaces libres.Les capacités de la méthodologie globale sont testées sur des mésostructurescomplexes,obtenues par tomographie aux rayons X.La compression à chaud d'un composite métallique dense est modélisée.La co-déformation peut être observées à l'échelle spatiale des phases.Deux cas de matériaux ``poreux'' sont considérés.Premièrement la simulation de la compression puis traction d'alliagesd'aluminium présentant des pores.Ces pores proviennent du coulage du matériau,leur fermeture et ré-ouverture mécanique est modélisée,y compris la coalescence à grande déformation.Deuxièmement la simulation de la compression de mousse métallique de faibledensité.Typiquement utilisée dans le but d'absorber de l'énergie mécanique,la compression jusqu'à densification provoque de nombreuses interactions entreles bras de matière. / Forming of multiphase materials involves complex mechanisms linked with therheology,morphology and topology of the phases.From a numerical point of view,modeling such phenomena by solving the partial differential equation (PDE) system accounting for thecontinuous behavior of the phases can be challenging.The description of the motion and the interaction of numerous discontinuities,associated with the phases,can be conceptually delicate and computationally costly.In this PhD,the discrete element method (DEM) is used to phenomenologically model finite inelastic strain inmulti-materials.This framework,natively suited for discrete phenomena,allows a flexible handling of morphological and topological changes.Ad hoc attractive-repulsive interaction laws are designed betweenfictitious particles,collectively rearranging to model irreversible strain in continuous media.The numerical behavior of a packing of particles can be tuned to mimic keyfeatures of isochoric perfect viscoplasticity:flow stress, strain rate sensitivity, volume conservation.The results for compression tests of simple bi-material configurations,simulated with the DEM,are compared to the finite element method (FEM) and show good agreement.The model is extended to cope with tensile loads.A method for the detection of contact and self-contact events of physicalobjects is proposed,based on a local approximation of the free surfaces.The potential of the general methodology is tested on complex mesostructuresobtained by X-ray tomography.The high temperature compression of a dense metallic composite is modeled.The co-deformation can be observed at the length scale of the phases.Two cases of ``porous'' material are considered.Firstly,the simulation of the compression and the tension of aluminum alloys with poresis investigated.These pores stem from the casting of the material,their closure and re-opening is modeled,including the potential coalescence occurring at large strain.Secondly,the compression of a metallic foam,with low relative density,is modeled.Typically used in energy absorption applications,the compression up to densification involves numerous interactions between thearms.
98

Modélisation numérique de l’écoulement de suspensions de fibres souples en régime inertiel. / Numerical modeling of long flexible fibers in inertial flows.

Kunhappan, Deepak 15 June 2018 (has links)
Un modèle numérique décrivant le comportement de fibres souples en suspension dans un écoulement de fluide en régime inertiel a été développé au moyen d'un couplage entre la méthode des éléments discrets et la méthode des volumes finis. Chaque fibre est discrétisée en plusieurs éléments de type poutre permettant de prendre en compte une déformation (flexion, torsion, allongement) et un mouvement de corps rigide. Les équations du mouvement des fibres sont résolues au moyen d'un schéma explicite du second ordre (temps et espace). Le mouvement de la phase fluide est décrit par les équations de Navier-Stokes, qui sont discrétisées et résolues au moyen d'un schéma aux volumes finis non structurés, d'ordre 4 (temps et espace). Le couplage entre la phase solide (discrète) et la phase fluide (continue) est obtenue par une pseudo méthode IBM (Immersed Boundary Method) dans laquelle l'effort hydrodynamique est calculé analytiquement. Plusieurs modèles de force hydrodynamique issus de la littérature sont analysés et leur validité ainsi que leurs limites sont identifiées. Pour des nombres de Reynolds (Re) correspondant au régime inertiel (0.01 < Re < 100, Re défini à l'échelle de la fibre), des formulations non-linéaires de la force hydrodynamique exercée par un écoulement uniforme sur un cylindre infini sont utilisées. Le couplage a aussi été utilisé pour des fibres rigides en écoulement de Stokes, en utilisant l'expression de la force de traînée issue de la théorie des corps élancés (`slender body theory'). Une expression du moment hydrodynamique par unité de longueur est obtenu à partir de simulations numériques par volumes finis de l'écoulement autour d'un cylindre élancé.Le modèle développé a été validé par comparaison avec plusieurs résultats expérimentaux et analytiques, du régime de Stokes (pour des fibres rigides) jusqu'aux régimes inertiels. Dans le cas du régime de Stokes, des simulations numériques du cisaillement de suspensions de fibres semi-diluées ont été réalisées. Le modèle développé permet de capturer les interactions hydrodynamiques et non-hydrodynamiques entre les fibres. Les interactions élasto-hydrodynamiques pour $Re$ fini ont été validées dans deux cas. Dans le premier cas, la flèche d'une fibre encastrée-libre dans un écoulement uniforme a été obtenu par calcul numérique et le résultat validé par comparaison aux résultats expérimentaux de la littérature. Dans le second cas, la conformation de fibres élancées et très déformables dans un écoulement turbulent homogène et isotrope a été obtenu par calcul numérique et le résultat validé par comparaison aux résultats expérimentaux de la littérature. Deux études numériques ont été réalisées pour étudier l'effet de la présence de fibres en suspension sur la turbulence au sein du fluide suspensif. Le modèle numérique a permis de reproduire le phénomène de réduction/amplification de la turbulence dans un écoulement en canal ou en conduite, dû à l'évolution microstructurale de la phase fibreuse. / A numerical model describing the behavior of flexible fibers under inertial flows was developed by coupling a discrete element solver with a finite volume solver.Each fiber is discretized into several beam segments, such that the fiber can bend, twist and rotate. The equations of the fiber motion were solved usinga second order accurate explicit scheme (space and time). The three dimensional Navier-Stokes equations describing the motion of the fluid phase was discretizedusing a fourth th order accurate (space and time) unstructured finite volume scheme. The coupling between the discrete fiber phase and the continuous fluid phasewas obtained by a pseudo immersed boundary method as the hydrodynamic force on the fiber segments were calculated based on analytical expressions.Several hydrodynamic force models were analyzed and their validity and short-comings were identified. For Reynolds numbers (Re) at the inertial regime(0.01 < Re < 100, Re defined at the fiber scale), non linear drag force formulations based on the flow past an infinite cylinder was used. For rigid fibers in creeping flow, the drag force formulation from the slender body theory was used. A per unit length hydrodynamic torque model for the fibers was derived from explicit numerical simulations of shear flow past a high aspect ratio cylinder. The developed model was validated against several experimental studies and analytical theories ranging from the creeping flow regime (for rigid fibers) to inertial regimes. In the creeping flow regime, numerical simulations of semi dilute rigid fiber suspensions in shear were performed.The developed model wasable to capture the fiber-fiber hydrodynamic and non-hydrodynamic interactions. The elasto-hydrodynamic interactions at finite Reynolds was validated with against two test cases. In the first test case, the deflection of the free end of a fiber in an uniform flow field was obtained numerically and the results were validated. In the second test case the conformation of long flexible fibers in homogeneous isotropic turbulence was obtained numerically and the results were compared with previous experiments. Two numerical studies were performed to verify the effects of the suspended fibers on carrier phase turbulence and the numerical model was able to reproduce the damping/enhancement phenomena of turbulence in channel and pipe flows as a consequence of the micro-structural evolution of the fibers.
99

Digging deep : A data-driven approach to model reduction in a granular bulldozing scenario

Ulin, Samuel January 2018 (has links)
The current simulation method for granular dynamics used by the physics engine AGX Dynamics is a nonsmooth variant of the popular Discrete Element Method (DEM). While powerful, there is a need for close to real time simulations of a higher spatial resolution than currently possible. In this thesis a data-driven model reduction approach using machine learning was considered. A data-driven simulation pipeline was presented and partially implemented. The method consists of sampling the velocity and density field of the granular particles and teaching a machine learning algorithm to predict the particles' interaction with a bulldozer blade as well as predicting the time evolution of its velocity field. A procedure for producing training scenarios and training data for the machine learning algorithm was implemented as well as several machine learning algorithms; a linear regressor, a multilayer perceptron and a convolutional neural network. The results showed that the method is promising, however further work will need to show whether or not the pipeline is feasible to implement in a simulation.
100

Aplicação do Método dos Elementos Discretos formado por barras no estudo do colapso de estruturas

Kosteski, Luis Eduardo January 2012 (has links)
No presente trabalho é apresentada uma versão do Método dos Elementos Discretos formado por barras (DEM) no estudo do colapso de estruturas. O Método dos Elementos Discretos foi introduzido, especialmente, para a simulação numérica de problemas de dano e fratura. Esse método tem habilidade natural para introduzir descontinuidades de uma maneira muito direta e intuitiva. Além disso, métodos discretos oferecem uma estrutura conveniente para dar conta da desordem da microestrutura do material por meio de modelos estatísticos. A versão do DEM utilizada neste trabalho consiste na discretização do contínuo em barras que formam uma treliça espacial regular, onde massas equivalentes são concentradas nos nós, e as rigidezes das barras são equivalentes ao contínuo que tentam representar. Leis uniaxiais de dano permitem modelar fratura e dano anisotrópico com relativa facilidade. Esta versão foi amplamente testada em diversos campos da Engenharia, entre eles, problemas dinâmicos, de impacto, geração e propagação de sismos, estudo de efeito de escala em rochas e concreto, análise da microestrutura de materiais. Este trabalho apresenta dois grandes temas, nos quais foram realizadas implementações no DEM que aumentam sua aplicabilidade. Também são implementadas modificações nas leis constitutivas antes utilizadas, e apresentadas, também, novas leis para dar flexibilidade na calibração dos modelos. São comparados os resultados utilizando as diversas leis na análise do efeito de escala de placas submetidas à tração. Também são analisados os resultados obtidos sob a óptica da teoria de escala multifractal. Neste campo, encontram-se respostas muito interessantes que explicam os mecanismos de fratura, assim como dão uma noção de que alterações deveriam ser realizadas no DEM para conseguir que o método fique completamente objetivo em relação à escala. Nesse processo, estudam-se diferentes formas de obter as dimensões fractais de placas de rocha submetidas à tração e é analisada a influência de alguns dos parâmetros do DEM, além da relação constitutiva utilizada. Finalmente, o DEM é introduzido dentro do sistema comercial Abaqus, com objetivo de resolver problemas com grande quantidade de graus de liberdade ou com as condições de contorno ou de carregamento muito complexos. Apresentam-se exemplos de validação e exemplos de aplicação que mostram as vantagens das inovações realizadas. / This paper presents a version of the Truss-like Discrete Element Method in the study of the collapse of structures. The discrete element method was introduced especially for numerical simulation of fracture and damage problems. This method has the natural ability to introduce discontinuities in a very direct and intuitive way. Moreover, discrete methods offer a convenient framework to account for the disorder of the material microstructure by means of statistical models. The truss-like Discrete Element Method (DEM) used in this work represents the continuum by means of a periodic spatial arrangement of bars with the masses lumped at their ends. The rigidity of the bars is equivalent to the continuum to trying to represent. Uniaxial damage Laws allow model fracture and anisotropic damage with relative ease. This version was widely tested in various engineering fields including: dynamics problems, impact, generation and propagation of earthquakes, study of scale effect in rock and concrete analysis of the microstructure of materials. This work presents two major issues in witch were performed DEM implementations that increase its applicability. To obtain a better description of the model modifications in the constitutive laws are implemented and new ones are presented. The scale effect results of plates of rock subjected to traction obtained to different laws are compared. These obtained results are examined under the Multifractal scaling law theory. In this field, very interesting answers that explain the mechanisms of fracture are found. They gives some notions of which changes should be made in DEM to obtain a fully scale objective method. In the process, different ways to obtain the fractal dimension of rock plates subjected to traction are studied. The influence of some DEM parameter and constitutive laws are also analyzed. Finally, the DEM has been implemented within the commercial system ABAQUS to solve problems with a large number of degrees of freedom or very complex contour or loading conditions. Presents examples of validation and application that show the benefits of innovations through.

Page generated in 0.0952 seconds