Spelling suggestions: "subject:"discrete fracture"" "subject:"iscrete fracture""
11 |
Groundwater inflow into rock tunnelsChen, Ran 09 November 2010 (has links)
Prediction of groundwater inflow into rock tunnels is one of the essential tasks of tunnel engineering. Currently, most of the methods used in the industry are typically based on continuum models, whether analytical, semi-empirical, or numerical. As a consequence, a regular flow along the tunnel is commonly predicted. There are also some discrete fracture network methods based on a discontinous model, which typically yield regular flow or random flow along the tunnel. However, it was observed that, in hard rock tunnels, flow usually concentrates in some areas, and much of the tunnel is dry. The reason is that, in hard rock, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern. A new method is developed in this work, which can model the fracture clustering and reproduce the flow concentration. After elaborate literature review, a new algorithm is developed to simulate fractures with clustering properties by using geostatistics. Then, a discrete fracture network is built and simplified. In order to solve the flow problem in the discrete fracture network, an existing analytical-numercial method is improved. Two case studies illustrate the procedure of fracture simulation. Several ideal tunnel cases and one real tunnel project are used to validate the flow analysis. It is found that fracture clustering can be modeled and flow concentration can be reproduced by using the proposed technique. / text
|
12 |
High-resolution discrete fracture network characterization using inclined coreholes in a Silurian dolostone aquifer in Guelph, OntarioMunn, Jonathan 06 January 2012 (has links)
The transport and fate of contaminants in fractured sedimentary rock aquifers depends strongly on the nature and distribution of the fracture network. The current standard practice of using only vertical coreholes to characterize bedrock aquifers can result in significantly biased data that is insufficient for fracture orientation analysis. This study involves the addition of two inclined coreholes to supplement existing data from eleven vertical coreholes at a contaminated site in Guelph, Ontario to reduce the effects of this bias. A suite of high-resolution, depth discrete data collection methods including core logging, borehole geophysics, and hydraulic testing were conducted to determine fracture orientation and spacing as well as hydraulic aperture distributions. The results of the orientation analysis demonstrate that the inclined coreholes were more effective at sampling high-angled fractures than the vertical coreholes and were necessary to identify all three of the dominant fracture sets on the site. The fracture network properties from this study can be used as input parameters for static and dynamic discrete fracture network models to assess current and future risks to municipal supply wells.
|
13 |
A Simulator with Numerical Upscaling for the Analysis of Coupled Multiphase Flow and Geomechanics in Heterogeneous and Deformable Porous and Fractured MediaYang, Daegil 16 December 2013 (has links)
A growing demand for more detailed modeling of subsurface physics as ever more challenging reservoirs - often unconventional, with significant geomechanical particularities - become production targets has moti-vated research in coupled flow and geomechanics. Reservoir rock deforms to given stress conditions, so the simplified approach of using a scalar value of the rock compressibility factor in the fluid mass balance equation to describe the geomechanical system response cannot correctly estimate multi-dimensional rock deformation.
A coupled flow and geomechanics model considers flow physics and rock physics simultaneously by cou-pling different types of partial differential equations through primary variables. A number of coupled flow and geomechanics simulators have been developed and applied to describe fluid flow in deformable po-rous media but the majority of these coupled flow and geomechanics simulators have limited capabilities in modeling multiphase flow and geomechanical deformation in a heterogeneous and fractured reservoir. In addition, most simulators do not have the capability to simulate both coarse and fine scale multiphysics.
In this study I developed a new, fully implicit multiphysics simulator (TAM-CFGM: Texas A&M Coupled Flow and Geomechanics simulator) that can be applied to simulate a 2D or 3D multiphase flow and rock deformation in a heterogeneous and/or fractured reservoir system. I derived a mixed finite element formu-lation that satisfies local mass conservation and provides a more accurate estimation of the velocity solu-tion in the fluid flow equations. I used a continuous Galerkin formulation to solve the geomechanics equa-tion. These formulations allowed me to use unstructured meshes, a full-tensor permeability, and elastic stiffness. I proposed a numerical upscaling of the permeability and of the elastic stiffness tensors to gener-ate a coarse-scale description of the fine-scale grid in the model, and I implemented the methodology in the simulator.
I applied the code I developed to the simulation of the problem of multiphase flow in a fractured tight gas system. As a result, I observed unique phenomena (not reported before) that could not have been deter-mined without coupling. I demonstrated the importance and advantages of using unstructured meshes to effectively and realistically model a reservoir. In particular, high resolution discrete fracture models al-lowed me to obtain more detailed physics that could not be resolved with a structured grid. I performed numerical upscaling of a very heterogeneous geologic model and observed that the coarse-scale numerical solution matched the fine scale reference solution well. As a result, I believed I developed a method that can capture important physics of the fine-scale model with a reasonable computation cost.
|
14 |
On Modeling Three-Phase Flow in Discretely Fractured Porous RockWalton, Kenneth Mark January 2013 (has links)
Numerical modeling of fluid flow and dissolved species transport in the subsurface is a challenging task, given variability and measurement uncertainty in the physical properties of the rock, the complexities of multi-fluid interaction, and limited computational resources. Nonetheless, this thesis seeks to expand our modeling capabilities in the context of contaminant hydrogeology. We describe the numerical simulator CompFlow Bio and use it to model invasion of a nonaqueous phase liquid (NAPL) contaminant through the vadose zone and below the water table in a fractured porous rock. CompFlow Bio is a three-phase, multicomponent, deterministic numerical model for fluid flow and dissolved species transport; it includes capillary pressure and equilibrium partitioning relationships. We have augmented the model to include randomly generated, axis-aligned, discrete fracture networks (DFNs). The DFN is coupled with the porous medium (PM) to form a single continuum. The domain is discretized using a finite-volume scheme in an unstructured mesh of rectilinear control volumes (CVs).
Herein we present the governing equations, unstructured mesh creation scheme, algebraic development of fracture intersection CV elimination, and coupling of PM CVs over a fracture plane to permit asperity contact bridged flow. We include: small scale two-phase water-air and NAPL-water simulations to validate the practice of intersection CV elimination; small scale simulations with water-air, NAPL-water, and NAPL-water-air systems in a grid refinement exercise and to demonstrate the effect of asperity contact bridged flow; intermediate scale 3D simulations of NAPL invading the saturated zone, based on the Smithville, Ontario, site; intermediate scale 2D and 3D simulations of NAPL invading the vadose zone and saturated zone with transient recharge, based on the Santa Susana Field Laboratory site, California.
Our findings indicate that: the formulation provides a practical and satisfactory way of modeling three-phase flow in discretely fractured porous rock; numerical error caused by spatial discretization manifests itself as several biases in physical flow processes; that asperity contact is important in establishing target water saturation conditions in the vadose zone; and simulation results are sensitive to relative permeability-saturation-capillary pressure relationships. We suggest a number of enhancements to CompFlow Bio to overcome certain computational limitations.
|
15 |
Integrating Laser Scanning with Discrete Element Modeling for Improving Safety in Underground Stone MinesMonsalve, Juan J. 10 May 2019 (has links)
According to the Mine Health and Safety Administration (MSHA), between 2006 and 2016, the underground stone mining industry had the highest fatality rate in 4 out of 10 years, compared to any other type of mining in the United States. Additionally, the National Institute for Occupational Safety and Health (NIOSH) stated that structurally controlled instability is a predominant failure mechanism in underground limestone mines. This type of instability occurs when the different discontinuity sets intercept with each other forming rock blocks that displace inwards the tunnel as the excavation takes place, posing a great hazard for miners and overall mine planning. In recent years, Terrestrial laser scanning (TLS) has been used for mapping and characterizing fractures present in a rock mass. TLS is a technology that allows to generate a three-dimensional multimillion point cloud of a scanned area. In addition to this, the advances in computing power throughout the past years, have allowed numerical modeling codes to represent more realistically the behavior of a fractured rock masses. This work presents and implements a methodology that integrates laser scanning technology along with Discrete Element Modeling as tools for characterizing, preventing, and managing structurally controlled instability that may affect large-opening underground mines. The stability of an underground limestone mine that extracts a dipping ore body with a room and pillar (and eventual stoping) mining method is analyzed with this approach. While this methodology is proposed based on a specific case study that does not meet the requirements to be designed with current NIOSH published guidelines, this process proposes a general methodology that can be applied in any mine experiencing similar failure mechanisms, considering site-specific conditions. The aim of this study is to ensure the safety of mine workers and to reduce accidents that arise from ground control issues. The results obtained from this methodology allowed us to generate Probability Density Functions to estimate the probability of rock fall in the excavations. These models were also validated by comparing the numerical model results with those obtained from the laser scans. / M.S. / According to the Mine Health and Safety Administration (MSHA), between 2006 and 2016, the underground stone mining industry had the highest fatality rate in 4 out of 10 years, compared to any other type of mining in the United States. Additionally, the National Institute for Occupational Safety and Health (NIOSH) stated that structurally controlled instability is one of the main causes of rock falls in underground limestone mines. This type of instability occurs when the fractures present in the rock mass intercept each other forming rock blocks that displace into the tunnel as the excavation takes place and poses a great hazard for miners. In recent years, Terrestrial laser scanning (TLS) has been used for mapping and characterizing fractures present in a rock mass. TLS is a technology that allows to generate a three-dimensional multimillion point cloud of a scanned area. In addition to this, the advances in computing power throughout the past years, have allowed simulation softwares such as the Discrete Element Model (DEM) to represent more realistically the behavior of a fractured rock mass under excavation. The aim of this work was to develop and evaluate a methodology that could complement already exisiting design guidelines that may not apply to all kind of underground mines. The presented methodology evaluates rock failure due to presence of discontinuites, through the integration of TLS with DEM and considers site specific conditions. An area of a case study mine was assessed with this methodology, where several laser scans were performed. Information extracted from this laser scans was used to simulate the response of the rock mass under excavation by running Discrete Element Numerical Models. Results from these models allowed us to estimate the probability of rock failure in the analized areas. These, rock block failure probability estimations provide engineers a tool for characterizing, preventing, and managing structurally controlled instability, and ultimately improving workers safety.
|
16 |
[en] 3D GEOLOGICAL AND STRUCTURAL GEOLOGY MODELING AND 2D OPEN PIT MINE SLOPE STABILITY ANALYSIS BY THE SYNTHETIC ROCK MASS (SRM) METHOD / [pt] MODELAGEM GEOLÓGICA E ESTRUTURAL 3D E ANÁLISE DE ESTABILIDADE DE TALUDES 2D EM MINA A CÉU ABERTO PELO MÉTODO SRM (SYNTHETIC ROCK MASS)CARLOS ENRIQUE PAREDES OTOYA 04 November 2021 (has links)
[pt] Em uma mina a céu aberto, a estabilidade dos taludes rochosos é um dos maiores desafios na engenharia das rochas devido aos processos geodinâmicos que formaram o depósito de minério, fazendo de cada depósito complexo e único. Algumas das complexidades encontradas comumente são: a geologia nos arredores do depósito, a alta variabilidade das propriedades, os complexos defeitos estruturais, o grau de alteração das rochas, a informação geomecânica limitada, etc. Antes de avaliar a estabilidade de taludes devemos caracterizar o maciço rochoso. Para caracterizá-lo se têm construído os modelos geológico, estrutural e do maciço rochoso para formar o modelo geotécnico como recomenda o projeto Large Open Pit (LOP), um projeto de pesquisa internacional relacionado à estabilidade de taludes de rocha nas minas a céu aberto. Uma vez construídos os domínios geotécnicos, a estabilidade de taludes rochosos pode ser avaliada para cada domínio pelos métodos de equilíbrio limite ou numéricos como o método dos elementos finitos ou o método dos elementos discretos. O uso do método depende de diversos fatores, como a influência dos elementos estruturais, a importância da análise, a informação disponível, etc. Os métodos de equilíbrio limite como os tradicionais de Bishop e Janbu podem ser usados na avaliação de estabilidade de grandes taludes de rocha que são susceptíveis a falhas rotacionais do maciço rochoso. Já o método de elementos finitos se tem desenvolvido rapidamente e tem ganhado popularidade para a análise de estabilidade de taludes no caso em que o mecanismo de falha não esteja controlado por estruturas discretas geológicas. Os métodos de elementos finitos estão baseados em modelos constitutivos de tensão – deformação para rochas intactas e têm dificuldades em simular famílias com um número grande de descontinuidades dentro do maciço rochoso. O método dos elementos discretos permite simular um número grande de descontinuidades assim como também permite a simulação de grandes deformações. A presente dissertação usa o modelo SRM (Synthetic Rock Mass) para avaliar a estabilidade de taludes de uma mina a céu aberto no Peru. O SRM é uma nova técnica para simular o comportamento mecânico de maciços rochosos fraturados e permite simular a propagação de fraturas e os efeitos da anisotropia. Está técnica usa o modelo BPM (Bonded Particle Model) para representar a rocha intacta e o SJM (Smooth - Joint Contact Model) para representar as estruturas do maciço rochoso dentro do programa PFC. Para a modelagem estrutural se utilizou o método DFN (Discrete Fracture Network). Para a determinação dos modelos geológicos e estrutural se utilizou o programa Petrel e para a análise de estabilidade de taludes usando o modelo SRM se utilizou o programa PFC 4.0 na versão 2D. / [en] In an open pit mine, stability of rock slope is one of the most challenges in rock mechanics due to geodynamic processes that formed the ore deposit, making each deposit complex and unique. Some of the complexities commonly encountered are: the geology in the vicinity of the deposit, the high variability of properties, the complex structural defects, the rock alteration degree, limited geomechanical data, etc. Before evaluating the slope stability we should characterize the rock mass. To characterize it we have built the geological model, structural model and rock mass model to form the geotechnical model as it recommends the Large Open Pit project (LOP), an international research project related to stability of rock slope in open pit mines. Once constructed geotechnical domains, the stability of rock mass slope can be evaluated for each domain by using some known methods like limit equilibrium, the finite elements and discrete element methods. The use of the method depends of different factors like influence of structural elements (defects), importance of analysis, available information, etc. Limit equilibrium traditional methods like Bishop and Janbu can be used to evaluate the stability of large rock slopes that are susceptible to rotational failure of rock mass. Since the finite element method has developed rapidly and has gained popularity for the slope stability analysis in the case where failure mechanism is not controlled by discrete geological structure. Finite element method is based on constitutive models of stress-strain for intact rocks and has difficulties in simulating sets with a large number of discontinuities within the rock mass. The discrete element method allows to simulate a large number of discontinuities and also allows the simulation of large deformations. This dissertation uses the SRM (Synthetic Rock Mass) model to evaluate the stability of slopes in an open pit mine in Peru. The SRM model is a new technique that allows the simulation of the mechanical behavior of fractured rock mass taking into account propagation of fractures and anisotropic effects. This technique uses two well established techniques like BPM (Bonded Particle Model) for representation of intact rock and the SJM (Smooth-Joint Contact Model) to represent the structural fabric within the PFC program. For structural modeling it was used DFN method (Discrete-Fracture Network). To determine the geological and structural model it was used the Petrel program (Version 2010.1) and for slope stability analysis with the SRM model it was used the version 2D of the PFC 4.0 program.
|
17 |
Bonded Particle Model for Jointed Rock MassMas Ivars, Diego January 2010 (has links)
Jointed rock masses are formed of intact rock and joints. There-fore, proper characterization of rock mass behavior has to consid-er the combined behavior of the intact rock blocks and that of the joints. This thesis presents the theoretical background of the Synthetic Rock Mass (SRM) modeling technique along with example applica-tions. The SRM technique is a new approach for simulating the mechanical behavior of jointed rock masses. The technique uses the Bonded Particle Model (BPM) for rock to represent intact ma-terial and the Smooth-Joint Contact Model (SJM) to represent the in situ joint network. In this manner, the macroscopic behaviour of an SRM sample depends on both the creation of new fractures through intact material, and slip/opening of pre-existing joints. SRM samples containing thousands of non-persistent joints can be submitted to standard laboratory tests (UCS, triaxial loading, and direct tension tests) or tested under a non-trivial stress path repre-sentative of the stresses induced during the engineering activity under study. Output from the SRM methodology includes pre-peak properties (modulus, damage threshold, peak strength) and post-peak proper-ties (brittleness, dilation angle, residual strength, fragmentation). Of particular interest is the ability to obtain predictions of rock mass scale effects, anisotropy and brittleness; properties that can-not be obtained using empirical methods of property estimation. Additionally, the nature of yielding and fracturing can be studied as the rock mass fails. This information can improve our understand-ing of rock mass failure mechanisms. / QC20100720
|
18 |
Site Application of a Channel Network Model for Groundwater Flow and Transport in Crystalline Rock / Applicering av en flödesvägsmodell på ett specifikt fältområde för grundvattenflöde och transporPedersen, Jonas January 2018 (has links)
Groundwater flow and transport in deep crystalline rock is an important area of research. This is partly due to its relevance for constructing a long term repository for storing radioactive spent nuclear fuel in deep bedrock. Understanding the behavior of flow and transport processes in deep crystalline rock is crucial in developing a sustainable solution to this problem. This study aims to increase the understanding of how channel network models (CNM) can be applied to represent groundwater flow and solute transport in sparsely fractured crystalline rock under site specific conditions. A main objective was to determine how to incorporate structural and hydrogeological site characterization data in the construction of the CNMs. In addition to this, the associated key parameters of the CNMs were investigated to gain further understanding of model site application. To that end, a scripting approach with the python scripting library Pychan3d was used to create alternative channel network representations of a field site. A conceptual discrete fracture network (DFN) model was constructed using field site data obtained from a structural model of the fractures present at the site of the Tracer Retention Understanding Experiments (TRUE) - Block Scale at the Äspö Hard Rock Laboratory (HRL). This conceptual model was used as a base for constructing two different alternatives, denoted respectively as sparse and dense, of a CNM. The sparse CNM consisted of a limited amount of channels for each fracture, while the dense CNM acted as a DFN proxy, taking the full extent of the fracture areas into account and creating a dense, large network of flow channels for each fracture. In order to verify the performance of the generated CNMs, a reproduction of tracer tests performed at the same specific field site was attempted using a particle tracking technique. In addition to this, long term predictions of solute transport without the interference of the pumps used during the tracer tests were done in order to estimate transport time distributions. Pychan3d and the scripting approach was successfully used to create CNMs respecting specific conditions from the TRUE-Block Scale site. The sparse CNM was found to give very adequate flow and transport responses in most cases and to be relatively easier to calibrate than its dense counterpart. The long term transport predictions at the site according to the models seem to follow a channelized pattern, with only a few select paths for transport. The difficulties encountered in matching the dense CNM with the tracer tests most likely stem from difficulties in flow calibration, as well as certain key parameters being assigned too generically.
|
19 |
Image based characterisation of structural heterogeneity within clastic reservoir analoguesSeers, Thomas Daniel January 2015 (has links)
The presence of subseismic scale faulting within high porosity sandstone reservoirs and aquifers represents a significant source of uncertainty for activities such as hydrocarbon production and the geologic sequestration of carbon dioxide. The inability to resolve geometrical properties of these smaller scale faults, such as size, connectivity and intensity, using conventional subsurface datasets (i.e. seismic reflection tomography, wireline log and core), leads to ambiguous representations within reservoir models and simulators. In addition, more fundamental questions still remain over the role of cataclastic faults in the trapping and transfer of mobile geofluids within the subsurface, particularly when two or more immiscible fluid phases are present, as is the case during hydrocarbon accumulation, waterflood operations and CO2 injection. By harnessing recent developments in 3D digital surface and volume imaging, this study addresses uncertainties pertaining to the geometrical and petrophysical properties of subseismic scale faults within porous sandstone reservoirs. A novel structural feature extraction and modelling framework is developed, which facilitates the restoration of fault and fracture architecture from digital rock surface models. This framework has been used to derive volumetric fault abundance and connectivity from a normal sense array of cataclastic shear bands developed within high porosity sandstones of the Vale of Eden Basin, UK. These spatially resolved measures of discontinuity abundance provide the basis for the geostatistical extrapolation of fracture/fault intensity into reservoir modelling grids, which promises the introduction of a much higher degree of geological realism into discrete fracture network models than can currently be achieved through purely stochastic methods. Moreover, by establishing spatial correspondences between volumetric faulting intensity and larger scale features of deformation observed at the study area (cataclastic shear zones), the work demonstrates the potential to relate reservoir equivalent measures of fault or fracture abundance obtained from outcrop to seismically resolvable structures within the subsurface, aiding the prediction of reservoir structure from oilfield datasets. In addition to the derivation of continuum scale properties of sub-seismic scale fault networks, a further investigation into the pore-scale controls which govern the transfer of fluids within cataclised sandstones has been conducted. Through X-ray tomographic imaging of experimental core flood (scCO2-brine primary drainage) through a cataclastic shear band bearing sandstone, insights into the influence that variations in fault structure exert over the intra-fault drainage pathway of an invading non-wetting fluid have been gained. Drainage across the fault occurs as a highly non-uniform and non-linear process, which calls into question the practice of using continuum methods to model cross fault flow. This work has also provided an improved understanding of the role that high capillary entry pressure cataclised regions play in modifying pore-fluid displacement processes within the surrounding matrix continuum. In particular, the high sweep efficiency and enhanced non-wetting phase pore-wall contact relating to elevated phase pressure observed during drainage points towards favourable conditions for wettability alteration within cataclised sandstones. This is likely to negatively impact upon the effectiveness of oil recovery and CO2 sequestration operations within equivalent reservoir and aquifer settings.
|
20 |
The Impact of Fracture Orientation on the Choice of Grout Fan Geometry - a Statistical Analysis / Inverkan av sprickorientering på valet av skärmgeometri för injektering - en statistisk analysOsterman, Fredrik January 2019 (has links)
Water ingress into rock tunnels is a problematic phenomenon – especially in urban areas – as a lowered groundwater table may cause harmful settlements. Furthermore, too much ingress can be an incentive for the environmental court to halt the tunnel process, in order to protect the nature as part of a national interest.Water ingress is normally lowered by injecting a water and cement mixture into boreholes in the rock mass – a process called rock grouting – thus sealing the rock fractures. Very little information and research has been on the subject of how the rock fracture orientation interact with the orientation and geometry of the grouting holes. The purpose of this thesis is to investigate whether or not it is possible and feasible to select a grout fan geometry that will have the most intersections with the rock fractures, based on fracture information gained in an early pre-investigation stage. The suitability of different grout fan geometries will be determined by analyzing the amount of fracture intersections that each geometry has in a discrete fracture network, generated based on data obtained from rock cores in the Stockholm Bypass project. The assumption is that more fracture intersections means a higher chance of sealing the rock mass. The results show that there is no clear difference in number of intersections between the analyzed grout fan geometries, indicating that focus should not be on analyzing the grout fans as whole units, but rather on the scale of individual grouting holes and fractures. This thesis also highlights the importance of monitoring according to the observational method. / Vatteninläckage i bergtunnlar är ett problem, speciellt inom tätbebyggda områden, eftersom en sänkt grundvattennivå kan orsaka sättningar i jordlagren och följaktligen skada infrastruktur. Dessutom kan ett för högt vatteninläckage vara ett incitament för miljödomstolen att stoppa tunneldrivningen i ett försök att skydda den allmänna miljön i dennas roll som ett nationalintresse.Vatteninträngning i tunnlar minskas normalt genom att injicera en blandning av vatten och mikrocement i borrhål lokaliserade i bergmassan – en process som kallas för sprickinjektering – och genom detta täta bergmassan. Idag finns mycket lite information tillgänglig om hur sprickors och injekteringshålens orienteringar interagerar med varandra.Syftet med denna uppsats är att undersöka huruvida det är genomförbart att i ett tidigt förundersökningsskede bestämma en skärmgeometri som kommer ha så många sprickskärningar som möjligt. Olika skärmgeometriers lämplighet bedömdes genom att analysera mängden sprickskärningar som varje geometri hade i ett diskret spricknätverk, baserat på indata från utvalda kärnborrningar från Förbifart Stockholm. Analysen utfördes under antagandet att fler sprickskärningar ger en större chans att täta berget.Resultaten visar att det inte finns en klar skillnad i antalen skärningar olika skärmgeometrier emellan, vilket indikerar att framtida fokus inte bör läggas på att analysera skärmgeometrier som enheter, utan snarare att analysen bör utföras på individuella injekteringshål och sprickor. Denna uppsats markerar också vikten av observationer under utförandet av berguttag och sprickinjektering i enlighet med observationsmetoden.
|
Page generated in 0.08 seconds