• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 10
  • 10
  • 10
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Disinfection By-Product Formation in the Water Distribution System of Morehead, Kentucky

Sekhar, Megan W. 11 October 2001 (has links)
No description available.
12

Occurance and Formation of Emerging Disinfection Byproducts in Beverages and Over-the-Counter Medications

Young, Sheena A., Young, Sheena A. January 2016 (has links)
Beyond the expected DBP exposure from drinking water, dermal from bathing, and inhalation, occurrence in food and beverage items can provide an additional occurrence pathway. Synthetic dyes are often added to beverages for aesthetic purposes and many are in the form of a reactive azo (-N=N-) dye or triarylmethane dye, both with a characteristic aromatic ring. The presence of dyes in beverages that are reconstituted with disinfected tap water pose the risk of reactions with the residual chlorine in the drinking water resulting in decolorization, and of greater concern, disinfection byproduct formation. Additionally, oral over-the-counter (OTC) medications contain chemical constituents that when reconstituted with tap water present a risk of DBP formation. Several studies were performed to evaluate the kinetic decay rates of the dyes and drugs in disinfectants, and the effects of water quality conditions on DBP formation. Commercial beverage products and OTC medications were evaluated for the DBPs that were detected in the free chlorine-treated precursor samples. The dye and drugs precursors followed second order kinetics, with the fastest rates for brilliant blue and phenylephrine in chlorinated water. The effects of water properties on precursor degradation and DBP formation was complex due to the influence of characteristics of precursor molecules. The cytotoxic and anti-estrogenic responses were measured in the dye and drug precursors and their respective beverages and OTC medications, to determine potential links. Mio Energy showed estrogenic character and Alka Seltzer induced an anti-estrogenic and cytotoxic response, however there were no clear linkages between the beverage/ medication and their respective dye and drug precursors.
13

Removal of Assimilable Organic Carbon and Disinfection By-Products Formation Potential from Water Treatment Plant Using a Biological Activated Carbon Process

Hung, Pi-hsia 04 July 2010 (has links)
Taiwan Water Supply Cooperation (TWSC) has upgraded traditional purification processes into advanced treatment systems in south Taiwan for many years. The removal efficiency of assimilable organic carbon (AOC) by ultrafiltration (UF) with reverse osmosis (RO) systems was 47% was lower than that of 62% by ozone with biological activated carbon system (BAC). In this work, we investigate the removal of AOC and disinfection by products formation potential (DBPFP) of raw water took from a water treatment plant by using BAC and membrane treatment units. BAC system of granular activated carbon(GAC) and powder activated carbon (PAC) showed two kind carbons have certain efficiency for AOC removal. Results we found could reach above 50% (from 44.28¡Ó9.84£gg acetate-C/L reduce to 20.93¡Ó4.25£gg acetate-C/L for GAC and from 45.92¡Ó17.75£gg acetate-C/L reduce to 21.23¡Ó4.25£gg acetate-C/L for PAC), when hydraulic retention time (HRT) in BAC reactor was at 1 hour. When HRT raised to 6 hours the concentration of AOC in effluent of BAC systems were reduced under 15 £gg/L, and removal efficiency could reach above 70%. The suggested limit level of AOC is 50 £gg/L of drinking water. In removal of DBPFP, BAC of two carbons has showed certain efficiency on trihalomethanes formation potential (THMFP) and haloacetic acids formation potential (HAA5FP). The results were done in removal of THMFP (from 20.54¡Ó6.48£gg/L reduce to 14.21¡Ó4.47£gg/L for GAC and from 24.64¡Ó6.74£gg/L reduce to 14.75¡Ó4.04£gg/L for PAC) and HAA5FP (from 39.64¡Ó10.38£gg/L reduce to 17.35£gg/L for GAC and from 17.86¡Ó5.13£gg/L reduce to 11.76¡Ó3.76£gg/L for PAC) in BAC reactors. They were all lower than national standard of drinking water (THMs 80£gg/L, HAAs 60£gg/L). It is believed that two kind carbons in BAC system could all reduce effectively on AOC and DBPFP to obtain high quality of drinking water with biological stability at HRT of 6 hours.
14

Study on the Treatment Efficiency of ATP and Application of Powdered Acti vated Carbon and Membrane Bioreactor to Remove Organic Compounds in Drinking Water

Huang, Chine-er 24 July 2009 (has links)
To improve water quality of drinking water, the Taiwan Water Supply Corp (TWSC) upgraded three water treatment plants (WTP), changing traditional treatment processes into two advanced membrane processes and one advanced ozonation processes in recent years. Membrane water treatment units of the water treatment plant comprise ultrafiltration (UF) and reverse osmosis (RO). And the advanced ozonation water treatment units comprise pellet softening, post-ozonation and biological activated carbon (BAC) adsorption. This study investigated the formation of disinfection byproducts (DBPs), dissolved organic carbon (DOC) and assimilable organic carbon (AOC) at two advanced water treatment plants (ATP) in Kaohsiung City, Taiwan, by implementing a sampling program. The purposes of this study include¡G(1) The evaluation of treatment efficiency of advanced water treatment plants. (2) Application of powdered activated carbon and membrane bioreactor in removing organic compounds in drinking water. TCM was by far the predominant species in the finished water, the average concentration of DPBs in this study at both plants were 13.97¡Ó4.18£gg/L and 21.49¡Ó10.59£gg/L of THMs for plant A and plant B, respectively. However, levels for DPBs compound are low in both plants and lower than the current national drinking water quality standards 80 £gg / L. But for anther typical DPBs (HAAs compounds), the average concentrations were 17.67¡Ó14.50£gg/L and 33.03¡Ó16.24£gg/L of HAA5 for plant A and plant B, respectively. DCAA and TCAA were the two major species of HAAs found in the two water samples under study. The sums of the two species represented in finished water were about 67% and 83% of HAA5 in A and plant B, respectively. The results showed that HAA5 concentration of all samples could meet current USEPA standards for drinking water quality. Importantly, our work show the advanced treatment processes have good removal on DPBs of treated water. In organic compounds removal, there is high efficiency by using post-ozonation combined with BAC, but low efficiency for membrane process due to the inhibition of electrical charge happened on surface of membrane. This inhibition is caused probably by high hardness and high ion strength in water. We found by combining BAC with membrane filtration process will effectively remove the organic compounds and lower the concentration of AOC for passing the limit value suggested in related researches of the world.
15

Analysis of Photocatalysis for Precursor Removal and Formation Inhibition of Disinfection Byproducts

January 2011 (has links)
abstract: Disinfection byproducts are the result of reactions between natural organic matter (NOM) and a disinfectant. The formation and speciation of DBP formation is largely dependent on the disinfectant used and the natural organic matter (NOM) concentration and composition. This study examined the use of photocatalysis with titanium dioxide for the oxidation and removal of DBP precursors (NOM) and the inhibition of DBP formation. Water sources were collected from various points in the treatment process, treated with photocatalysis, and chlorinated to analyze the implications on total trihalomethane (TTHM) and the five haloacetic acids (HAA5) formations. The three sub-objectives for this study included: the comparison of enhanced and standard coagulation to photocatalysis for the removal of DBP precursors; the analysis of photocatalysis and characterization of organic matter using size exclusion chromatography and fluorescence spectroscopy and excitation-emission matrices; and the analysis of photocatalysis before GAC filtration. There were consistencies in the trends for each objective including reduced DBP precursors, measured as dissolved organic carbon DOC concentration and UV absorbance at 254 nm. Both of these parameters decreased with increased photocatalytic treatment and could be due in part to the adsorption to as well as the oxidation of NOM on the TiO2 surface. This resulted in lower THM and HAA concentrations at Medium and High photocatalytic treatment levels. However, at No UV exposure and Low photocatalytic treatment levels where oxidation reactions were inherently incomplete, there was an increase in THM and HAA formation potential, in most cases being significantly greater than those found in the raw water or Control samples. The size exclusion chromatography (SEC) results suggest that photocatalysis preferentially degrades the higher molecular mass fraction of NOM releasing lower molecular mass (LMM) compounds that have not been completely oxidized. The molecular weight distributions could explain the THM and HAA formation potentials that decreased at the No UV exposure samples but increased at Low photocatalytic treatment levels. The use of photocatalysis before GAC adsorption appears to increase bed life of the contactors; however, higher photocatalytic treatment levels have been shown to completely mineralize NOM and would therefore not require additional GAC adsorption after photocatalysis. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2011
16

Novel Operation of Granular Activated Carbon Contactors for Removal of Disinfection Byproducts Precursors

January 2017 (has links)
abstract: Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency while reducing costs. This dissertation presents four strategies to reduce improve GAC usage while reducing formation of DBPs. The first part of this work adopts Rapid Small Scale Tests (RSSCTs) to evaluate removal of molecular weight fractions of NOM, characterized using size exclusion chromatography (SECDOC). Total trihalomethanes (TTHM), haloacetic acids (HAA5) and haloacetonitriles (HAN) formation were quantified after treatment with GAC. Low MW NOM was removed preferentially in the early bed volumes, up until exhaustion of available adsorption sites. DBP formation potential lowered with DOC removal. Chlorination prior to GAC is investigated in the second part of this work as a strategy to increase removal of NOM and DBP precursors. Results showed lower TTHM formation in the effluent of the GAC treatment when pre-chlorination was adopted, meaning this strategy could help optimize and extend the bed life if GAC filters. The third part of this work investigates in-situ GAC regeneration as an alternative to recover adsorption capacity of field-spent GAC that could potentially offer new modes of operation for water treatment facilities while savng costs with reactivation of spent GAC in an external facility. Field-spent GACs were treated with different oxidant solutions and recovery in adsorption capacity was evaluated for NOM and for two micro pollutants. Recovery of GAC adsorption capacity was not satisfactory for most of conditions evaluated. This indicates that in-situ GAC regeneration could be more effective when the adsorbates are present at high concentrations. Lastly, this work investigates the impact of low molecular weight polyDADMAC on N-nitrosodimethylamine (NDMA) formation. Water treatment facilities rely on polyDADMAC as a coagulant aid to comply with NOM removal and turbidity requirements. Since polymer-derived NDMA precursors are not removed by GAC, it is essential to optimize the use and synthesis of polyDADMAC to reduce NDMA precursors during water treatment. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2017
17

Identification and Correlation of Disinfection Byproducts and Total Organic Halogen Precursors in a Biofilm Matrix

Khan, Mohd Yahya January 2014 (has links)
No description available.
18

Removal of selected water disinfection byproducts, and MTBE in batch and continuous flow systems using alternative sorbents.

Kadry, Ahmed Y. 12 1900 (has links)
A study was conducted to evaluate the sorption characteristics of six disinfection byproducts (DBPs) on four sorbents. To investigate sorption of volatile organic compounds (VOCs), specially designed experimental batch and continuous flow modules were developed. The investigated compounds included: chloroform, 1,2-dichloroethane (DCE), trichloroethylene (TCE), bromodichloromethane (BDCM), methyl tertiary butyl ether (MTBE), bromate and bromide ions. Sorbents used included light weight aggregate (LWA), an inorganic porous material with unique surface characteristics, Amberlite® XAD-16, a weakly basic anion exchange resin, Amberjet®, a strongly basic anion exchange resin, and granular activated carbon (GAC). Batch experiments were conducted on spiked Milli-Q® and lake water matrices. Results indicate considerable sorption of TCE (68.9%), slight sorption of bromate ions (19%) and no appreciable sorption for the other test compounds on LWA. The sorption of TCE increased to 75.3% in experiments utilizing smaller LWA particle size. LWA could be a viable medium for removal of TCE from contaminated surface or groundwater sites. Amberlite® was found unsuitable for use due to its physical characteristics, and its inability to efficiently remove any of the test compounds. Amberjet® showed an excellent ability to remove the inorganic anions (>99%), and BDCM (96.9%) from aqueous solutions but with considerable elevation of pH. Continuous flow experiments evaluated GAC and Amberjet® with spiked Milli-Q® and tap water matrices. The tested organic compounds were sorbed in the order of their hydrophobicity. Slight elevation of pH was observed during continuous flow experiments, making Amberjet® a viable option for removal of BDCM, bromate and bromide ions from water. The continuous flow experiments showed that GAC is an excellent medium for removal of the tested VOCs and bromate ion. Each of the test compounds showed different breakthrough and saturation points. The unique design of the continuous flow apparatus used in the study proved to be highly beneficial to assess removal of volatile organic compounds from aqueous solutions.
19

Evaluating the Toxicity and Formation of Halobenzoquinones in Point-of-Use Chlorinated Drinking Water

Hung, Stephanie 25 October 2018 (has links)
Chlorine has effectively reduced the prevalence of waterborne diseases, however there are secondary consequences to this public health advancement. Disinfection byproducts (DBPs) are chemicals formed when chlorine reacts with natural organic matter (NOM) in water. A new class of DBPs, halobenzoquinones (HBQs), has recently been identified and data suggests it could be potentially carcinogenic and up to 1000 times more toxic than some regulated DBPs. So far, in vitro studies have assessed HBQ toxicity without taking into account its transformation in cell media into potentially less toxic compounds. This study evaluated the toxic effects of one HBQ, 2,6-DCBQ, and its transformed derivatives on colon epithelial and liver hepatoma cell lines by measuring intracellular reactive oxygen species production and cell viability post-DCBQ exposure. In addition, to better quantify the trade-off between exposure to waterborne pathogens and 2,6-DCBQ, the inactivation of a virus indicator (MS2), and formation of DCBQ were determined in chlorinated surface waters. Dose-dependent toxic effects were observed in both cell lines and transformed DCBQs were observed to be less toxic than their parent compound. MS2 inactivation occurred immediately post-chlorination, but DCBQ was detected simultaneously. Such findings indicate that this compound is toxic to human cells, including colon epithelial cells, which may be pertinent due to the possible association between chlorinated waters and colon cancer. Findings also suggest this DBP may be relevant in developing countries because HBQs may form in point-of-use chlorinated drinking waters. Furthermore, observed reduction in toxicity of media-transformed DCBQs calls current literature on HBQ toxicity into question.
20

Investigating the Impact of Permanganate Pre-Oxidation on Dissolved Organic Matter During Drinking Water Treatment Using Ultrahigh Resolution Mass Spectrometry

Laszakovits, Juliana Rose 14 October 2021 (has links)
No description available.

Page generated in 0.1098 seconds