• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 36
  • 36
  • 18
  • 14
  • 14
  • 10
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Enhanced real-time bioaerosol detection : atmospheric dispersion modeling and characterization of a family of wetted-wall bioaerosol sampling cyclones

Hubbard, Joshua Allen, 1982- 22 February 2011 (has links)
This work is a multi-scale effort to confront the rapidly evolving threat of biological weapons attacks through improved bioaerosol surveillance, detection, and response capabilities. The effects of bioaerosol release characteristics, transport in the atmospheric surface layer, and implications for bioaerosol sampler design and real-time detection were studied to develop risk assessment and modeling tools to enhance our ability to respond to biological weapons attacks. A simple convection-diffusion-sedimentation model was formulated and used to simulate atmospheric bioaerosol dispersion. Model predictions suggest particles smaller than 60 micrometers in aerodynamic diameter (AD) are likely to be transported several kilometers from the source. A five fold increase in effective mass collection rate, a significant bioaerosol detection advantage, is projected for samplers designed to collect particles larger than the traditional limit of 10 micrometers AD when such particles are present in the source distribution. A family of dynamically scaled wetted-wall bioaerosol sampling cyclones (WWC) was studied to provide bioaerosol sampling capability under various threat scenarios. The effects of sampling environment, i.e. air conditions, and air flow rate on liquid recovery rate and response time were systematically studied. The discovery of a critical liquid input rate parameter enabled the description of all data with self-similar relationships. Empirical correlations were then integrated into system control algorithms to maintain microfluidic liquid output rates ideally suited for advanced biological detection technologies. Autonomous ambient air sampling with an output rate of 25 microliters per minute was achieved with open-loop control. This liquid output rate corresponds to a concentration rate on the order of 2,000,000, a substantial increase with respect to other commercially available bioaerosol samplers. Modeling of the WWC was performed to investigate the underlying physics of liquid recovery. The set of conservative equations governing multiphase heat and mass transfer within the WWC were formulated and solved numerically. Approximate solutions were derived for the special cases of adiabatic and isothermal conditions. The heat and mass transfer models were then used to supplement empirical correlations. The resulting semi-empirical models offer enhanced control over liquid concentration factor and further enable the WWC to be deployed as an autonomous bioaerosol sampler. / text
32

Modeling of Particulate Matter Emissions from Agricultural Operations

Bairy, Jnana 1988- 02 October 2013 (has links)
State Air Pollution Regulation Agencies (SAPRAs) issue and enforce permits that limit particulate matter emissions from all sources including layer and broiler facilities, cattle feedyards, dairies, cotton gins, and grain elevators. In this research, a process was developed to determine distances from emitting sources to where the estimated concentrations were less than the National Ambient Air Quality Standards (NAAQS). These distances are a function of emission rates and meteorological conditions. Different protocols were used to develop emission factors for cattle feedyards and layer houses. Dispersion modeling with American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was conducted to determine the emissions of particulate matter. These data were used to determine the distances from the sources to where the concentrations of particulate matter (PM) would be less than the NAAQS. The current air-permitting process requires that concentrations from a source do not exceed the NAAQS at the property line and beyond for the facility to be in compliance with its permit conditions. Emission factors for particulate matter less than 10 micrometers (PM10) were developed for cattle feedyards using a reverse modeling protocol and Tapered Element Oscillating Microbalance (TEOM) sampler data. Corrections were applied to the TEOM measurements to account for TEOM vs. filter-based low-volume (FBLV) sampler bias and over-sampling of PM10 pre-collectors. Invalid concentrations and dust peaks larger than mean ± 3 times the standard deviation were excluded from this study. AERMOD predictions of downwind concentrations at cotton gins were observed for compliance with 24-hour PM10 and PM2.5 NAAQS at property lines. The emissions from three cotton gins were analyzed at 50 m and 100 m distances. TEOM and FBLV samplers were used to collect 24-hour PM10 measurements inside a laying hen house. The distances to the property lines at which the emissions of PM10 were below the 24-hour average PM10 standards were estimated using AERMOD. The results suggested that the special use of the NAAQS for as the property-line concentration not to be exceeded, could be problematic to agriculture. Emission factors that were comparable of published emission factors were obtained in this study. Large distances to property lines were required when minimum flow rate recommendations were not considered. Emission factors that are representative of the emissions in a particular facility are essential; else facilities could be inappropriately regulated.
33

Monitoring And Modeling To Estimate Hydrogen Sulfide Emissions And Dispersion From Florida Construction And Demolition Landfills To Construct Odor Buffering Distances

Bolyard, Steven Jeffrey 01 January 2012 (has links)
Emissions of hydrogen sulfide (H2S) from construction and demolition (C & D) landfills can result in odors that are a significant nuisance to nearby neighborhoods and businesses. As Florida’s population continues to grow and create development pressures, housing is built closer to existing landfills. Additionally, new landfills will be created in the future. This research project was undertaken to develop a detailed modeling methodology for use by counties and other landfill owners to provide them with an objective and scientifically defensible means to establish odor buffer zones around C & D landfills. A technique for estimating methane (and odorous gas) emissions from municipal solid waste (MSW) landfills was recently developed by researchers at the University of Central Florida. This technique was based on measuring hundreds of ambient methane concentrations near the surface of the landfill, and combining that data with matrix inversion mathematics to back-solve the dispersion equations. The technique was fully documented in two peer-reviewed journal articles. This project extends that methodology. In this work the author measured ambient H2S concentrations at various locations in a C & D landfill, and applied those same matrix inversion techniques to determine the H2S emission rates from the landfill. The emission rates were then input into the AERMOD dispersion model to determine H2S odor buffer distances around the landfill. Three sampling trips to one C & D landfill were undertaken, data were taken, and the modeling techniques were applied. One problem encountered was that H2S emissions from C & D landfills are typically about 1000 times smaller than methane emissions (from MSW landfills). Thus, H2S iv ambient concentrations often are near the detection limits of the instruments, and the data may not be as reliable. However, this approach could be used for any particular C & D landfill if the appropriate amount of data were available to characterize its emissions with some certainty. The graphical tool developed in this work shows isopleths of "H2S" concentrations at various distances, and color codes the isopleths into a "green-yellow-red" scheme (analogous to a traffic signal) that depicts zones where private landowners likely will not detect odors, where they may experience some odors, or where they likely will experience odors. The "likelihood" can be quantified by selecting the Nth highest hourly concentrations in one year to form the plot. In this study, N was conservatively selected as 8. Requiring that concentrations be at or below the 8 th highest concentration in a year corresponds to a 99.9% probability of not exceeding that concentration at that distance in any future year. The graphical tool can be applied to any C & D landfill but each landfill is different. So this technique depends on having a fairly good estimate of the rate of emissions of H2S from the landfill in question, and at least one year’s worth of hourly meteorological data (wind speed, direction, and stability class) that is representative of the landfill location. The meteorological data can be obtained with relative ease for most locations in Florida; however, the emission data must be obtained from on-site measurements for any given landfill.
34

Estimation des émissions surfaciques du biogaz dans une installation de stockage des déchets non dangereux / Estimation of biogas surface emission in a landfill site

Allam, Nadine 30 January 2015 (has links)
Les ISDND produisent du biogaz par fermentation des déchets organiques. Le biogaz principalement composé de CH4 et CO2 représente un enjeu environnemental majeur. Cette étude propose un outil d’estimation des émissions surfaciques de biogaz d’une ISDND par modélisation de la dispersion atmosphérique d’un gaz traceur, en l’occurrence, le méthane. Les dynamiques spatiales et temporelles des concentrations en CH4 et en COV ont été suivies sur et dans l’entourage de l’ISDND d’étude (Séché Environnement) en fonction des conditions météorologiques. Les résultats montrent des faibles teneurs atmosphériques en COV et en CH4 sur le site d’étude validant une faible émission de ces espèces. Les COV mesurés sont émis par différentes sources dont la contribution est plus importante que celle de l’ISDND et aucun COV ne constitue un traceur de biogaz émis par le site. En revanche, l’ISDND apparait comme source principale du CH4 détecté. Deux méthodes sont proposées pour estimer les émissions surfaciques de méthane en utilisant un modèle de dispersion atmosphérique Gaussien ADMS, validé par comparaison des teneurs atmosphériques en méthane mesurées et modélisées et leur dynamique temporelle. La première méthode repose sur une approche inverse et la deuxième est une approche statistique par régression. Les émissions de CH4 sont estimées pour la période d’exposition de la diode laser aux émissions du site pour 4 scénarios météorologiques types identifiés par une classification hiérarchique. Les résultats valident l’influence des paramètres météorologiques, surtout de la stabilité de l’atmosphère, sur la dispersion atmosphérique et les émissions surfaciques en méthane. / Landfill sites produce biogas by degradation of biodegradable organic matter. Biogas mainly composed of CH4 and CO2 represents a major environmental challenge. This study propose a method to estimate biogas surface emissions in landfill sites using atmospheric dispersion modeling of a tracer gas, in this case, methane. The spatial and temporal dynamics of CH4 and VOC concentrations have been followed on the studied landfill site (Séché Environnement) for several weather conditions. Measurement results show low atmospheric VOC and CH4 concentrations on the studied landfill site which validates low emissions of these compounds. Detected VOC are emitted by different sources, excluding the landfill site. The contribution of these sources on VOC concentrations is more important than that of the landfill site and no VOC could be identified as tracer of biogas emitted by landfill site. However, CH4 is emitted by the landfill site, its principal source. Two methods are proposed to estimate methane surface emissions using a Gaussian atmospheric dispersion model ADMS. Gaussian model is validated by comparison of the temporal dynamics and atmospheric concentrations of methane measured on the site and those modeled. The first method is based on an inverse approach and the second one is a statistical regression approach. CH4 emissions are estimated for the exposure period of the laser diode to the site emissions and for 4 weather scenarios identified by a hierarchical classification. Results validate the influence of meteorological parameters, especially the stability of the atmosphere, on the atmospheric dispersion and methane surface emissions.
35

Applying Lessons from Nature to Advance Computational Sustainable Design: Designing Industrial Landscapes and Transitions towards Neutrality

Charles, Michael T. January 2021 (has links)
No description available.
36

Sea Breeze Circulation in the Auckland Region:Observational Data Analysis and NumericalModelling

Khan, Basit Ali January 2010 (has links)
The main aim of this research is to improve our knowledge of the sea breeze circulation in the complex coastal environments, where more than one mesoscale circulations occur. Interaction of these circulations with each other and with external factors such as topographical features and large scale winds leads to pronounced changes in the thermodynamic structure of the boundary layer. The variations in sea breeze circulation also have distinct effect on the pollutant transport and dispersion mechanisms in the coastal urban areas. In this research, dynamic and thermodynamic characteristics of the sea breeze circulation and their associated air pollution potential have been investigated by utilizing observational data for two summer periods and numerical modelling techniques. Effect of some external factors such as gradient flow and terrain elevation has also been examined. Observed meteorological and air quality data was obtained from a number of monitoring sites within and around Auckland while Advanced Weather Research & Forecasting (WRF) and ‘The Air Pollution Model’ (TAPM) were employed to simulate meteorology and pollutant dispersion in Auckland. WRF is used to investigate the thermally induced mesoscale circulation while TAPM has been employed to examine the pollutant dispersion in the region. Both models were validated against observed data from six different sites within Auckland. Validation results of WRF and TAPM are also compared with surface meteorology. Validation and inter-comparison of the two models show that WRF performed better than TAPM for all the surface meteorology variables. WRF showed a positive bias in predicted winds speed and relative humidity and a cold bias in the near surface Temperature. TAPM on the other hand under-predicted surface winds, while near surface temperature and relative humidity are similar to WRF. Results show that the sea breeze occurred around 20% of the two summer periods of 2006 and 2007. Both observed data analysis and the numerical modelling results confirmed the existence of two thermally induced systems in the Auckland region. Bay breezes are initiated in the morning hours (0800 – 1000 hours) from small bodies of water (Manukau, Waitemata, and Kaipara Harbour, and along the Hauraki Gulf coastline), followed by mature sea breezes from the main bodies of water (Tasman Sea and larger Hauraki Gulf area) in the late morning. The cessation of sea breezes started after 1600 hours. Frequency of sea breeze days was the highest under coast-parallel gradient winds (southeast and northwest), with speeds < 6 m s-1. The predicted depth of the sea breeze inflow ranged between 200 and 600 m, while the depth of the return flow was in the range of 200 – 500 m. Sensible heat flux is an important control in the development of sea breeze over the region. Coastal mountain ranges helped early onset of the sea breeze, but also inhibited inland propagation. Strong jet-like westerly winds along the coastline near the Manukau Harbour are due partly to the narrow opening at the Manukau Head, reduced friction over the harbour water, and divergence of wind due to coastline shape. Gradient winds significantly affect the evolution of the sea breeze and modify many of its dynamics, such as the sea breeze inflow layer, return flow, inland penetration, sea breeze head, etc. Under northerly gradient flow northeast sea breeze lasts longer while under southerly gradient flow cessation of the westerly sea breeze was delayed. Over both east and west coasts, WRF predicted anticlockwise rotation, especially under easterly gradient wind conditions. However, inland stations near Manukau Harbour show partial and complete clockwise rotation, which is primarily due to orographic features of the region. The diurnal rotation of the sea breeze system may contribute to recirculation of pollutants in the morning hours under coast-parallel gradient wind conditions. Pollutants that are emitted during morning peak traffic hours and advected towards Manukau Harbour by the remnants of the land breeze may be returned by bay breezes in the mid morning hours. Mixed layer height over land before arrival of the sea breeze also varied a lot and ranged between 600 to 1400 m. A convective internal boundary layer (CIBL) forms in the surface layer after arrival of the sea breeze. The CIBL under coast parallel gradient winds was relatively shallow (200 – 400 m), while under coasts-normal gradient winds (southwest and northeast), the predicted depth was in the range of 400 to 500 m. However, the inland extent of the CIBL was greater under coast-normal winds, especially under south-westerly gradient winds. The ground level concentration of air pollutants thus can be increased during sea breeze inflow over the region. Both bay breeze and mature sea breeze contribute towards development, extent and strength of the sea breeze convergence zones (SBCZs). Gradient winds and terrain play an important role in the position and strength of SBCZs. Under strong south-westerly gradient flow, a SBCZ is formed along the eastern coastline, while under north-easterly gradient winds a SBCZ is formed along the west coastline. During coast-parallel gradient winds the SBCZ is formed in the middle of landmass, and is then gradually displaced eastward or westward depending on the balance between large scale PGF and surface friction effect. In addition to SBCZs, terrain and coastline-induced convergences were also evident. Higher ground level concentrations of pollutants are expected under coast-normal gradient winds, when SBCZs are formed in the middle of the land mass and the wind speed of the sea breeze inflow and the sea breeze front is relatively low. This may increase pollution concentration, especially in the evening hours, to unacceptable levels. Results of this research suggest that given the size, synoptic meteorology and specific geography of the region, significant recirculation of pollutants is not likely to happen to contribute to next day’s pollution. The pollutant concentration may increase in the SBCZs, but their ability to recirculate the pollutants requires more extensive research. A closed sea breeze circulation cell is unlikely to form in this region due to topographical influences and a strong gradient wind effect. The pollutant plume is expected to be advected in the return flow over the peaks of higher terrain and via the top of the convergence zones, but its remixing in the onshore flow is subject to many factors such as gradient wind speed and direction, direction of the return flow and nature (size and state) of the pollutant. In appropriate conditions, pollution levels may reach to unhealthy levels under coast-parallel gradient wind condition.

Page generated in 0.1428 seconds