• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Célula fotovoltaica orgânica de heterojunção de Poli (3-Hexiltiofeno) (P3HT) e P(NDI20D-T2) (N2200) : preparação e caracterização / Heterojunction organic photovoltaic cell of Poly (3-Hexylthiophene) (P3HT) and P(NDI20D-T2) (N2200) : preparation and characterization

Silva, Patrick Pascoal de Brito 15 February 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2016. / Neste trabalho são apresentados os passos para desenvolvimento de uma célula solar orgânica de heterojunção dos polímeros semicondutores P3HT e N2200. O dispositivo foi desenvolvido em forma de filmes de materiais poliméricos sobrepostos sobre um substrato de vidro (FTO). Foram testadas algumas misturas com proporções em peso de P3HT:N2200 como filme fino da camada ativa. Os métodos de deposição dos filmes foram o de spin coater (com as soluções preparadas usando o clorofórmio) e evaporação térmica em câmara de alto vácuo. O PEDOT:PSS foi usado como camada transportadora de buracos e o C60 como camada transportadora de elétrons. O alumínio foi usado como eletrodo de topo. O trabalho experimental foi dividido em duas partes. Na primeira, foi realizada a caracterização óptica e morfológica dos filmes resultantes da deposição pelo método de spin coating. O espectro de absorção do filme de P3HT apresentou uma banda entre 350 e 670nm. O espectro de absorção do filme de N2200 apresentou duas bandas: a primeira entre 350 e 465nm e a segunda entre 477 e 850nm. Os espectros de todos os filmes das misturas apresentaram uma grande banda de absorção, variando de 350nm a 850nm. A caracterização morfológica dos filmes da mistura dos dois polímeros permitiu observar a presença de furos nos filmes. Na segunda parte, foi feita a caracterização óptica e morfológica em novos filmes para efeitos de comparação. Os espectros de absorção dos filmes se comportaram de maneira semelhante aos obtidos na primeira parte. Houve uma pequena variação na intensidade de absorção ocasionada pela mudança da concentração das soluções usadas para deposição. O estudo de fotoluminescência dos filmes permitiram observar a emissão do P3HT entre 600 e 800nm e uma faixa de emissão do N2200 entre 760 e 850nm. As morfologias dos filmes feitos na segunda parte não apresentaram furos, mas sim alguns glóbulos por toda a área analisada. A caracterização elétrica foi realizada somente na segunda parte do trabalho e foi feita em dispositivos montados com a seguinte estrutura: FTO/PEDOT:PSS/P3HT:N2200/C60/Alumínio. Além das diferentes proporções do filme da camada ativa, foram feitos dois tipos de dispositivos com filmes de C60: o primeiro com espessura de 10nm e o segundo com 30nm. Os dispositivos com a camada de 30nm de C60 apresentaram melhores valores de eficiência de conversão de potência (η) quando comparados aos dispositivos com 10nm. O dispositivo com melhor eficiência (η = 0,22%) foi o de proporção 1:1 de P3HT:N2200 e filme de C60 com 30nm. Nas análises de eficiência quântica externa (IPCE) foi observada uma maior contribuição da absorção do C60 para a fotocorrente. A contribuição da absorção do P3HT e do N2200 (bem pequena) só pôde ser vista nos dispositivos com 30nm de C60. / This work shows the steps for development of an organic solar cell semiconductor heterojunction polymer P3HT and N2200. The device is designed in the form of polymeric material films superimposed on a glass substrate (FTO). They were tested some blends with ratio by weight of P3HT: N2200 as thin film of the active layer. The methods of film deposition were spin coater (with solutions prepared using the chloroform) and thermal evaporation in a high vacuum chamber. The PEDOT: PSS was used as a hole transporting layer and the C60 as electron transport layer. Aluminum was used as the top electrode. The experimental work was divided in two parts. At first, the optical and morphological characterization of the films resultant from deposition by spin coating method was performed. The P3HT film absorption spectrum showed a band between 350 and 670nm. Already, N2200 film absorption spectrum showed two bands: the first between 350 and 465nm, and the second between 477 and 850nm. The spectra of all blends films showed a large absorption band ranging from 350nm to 850nm. The morphological characterization of films of the two polymers of the blend allowed to observe the presence of holes in the film. The second part was made optical and morphological characterization in new films for comparison. Films absorption spectra whether behaved in a manner similar to those obtained in the first part. There was a small variation in the absorption intensity caused by the change of the concentration of the solutions used for deposition. The photoluminescence study of the films allowed to observe the emission of P3HT between 600 and 800nm and an emission range of between 760 and 850nm N2200. The morphology of the films made in the second part showed no holes, but some globules throughout the analyzed area. The electrical characterization was performed only in second part and was made into assembled with the following structure: FTO/PEDOT: PSS/P3HT:N2200/C60/Aluminium. Besides, the different ratios of the active layer film, there have been two types of devices with C60 films: the first with a thickness of 10nm and seconds with 30nm. The devices with the layer of 30nm C60 showed better power conversion efficiency (η) values compared to devices with 10nm. The device with better efficiency (η = 0.22%) was the 1: 1 ratio of P3HT: C60 N2200 and film with 30nm. The external quantum efficiency (IPCE) analysis was observed a greater contribution of C60 absorption to the photocurrent. The contribution of absorption of P3HT and N2200 (very small) could only be seen on devices with 30nm C60.
2

Avaliação das propriedades fotoquímicas de moléculas impregnadas em resinas poliéster

Bettiol, Áureo Dantas January 2014 (has links)
Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciência e Engenharia de Materiais da Universidade do Extremo Sul Catarinense - UNESC, como requisito à obtenção do título de Mestre em Ciência e Engenharia de Materiais. / Nesse trabalho são apresentados o desenvolvimento e a caracterização de filmes orgânicos de resina acrílica aditivados com 8 moléculas fotossensíveis doadoras de elétrons da classe diazol e aceptores da classe tetrazol. Os filmes foram processados utilizando-se a técnica de spin coating. A caracterização óptica dos filmes foi realizada pelas técnicas de espectroscopia de fluorescência e UV-Vis. A estabilidade térmica foi avaliada por análise termogravimétrica, sendo que a estabilidade fotoquímica foi analisada por infravermelho com transformada de Fourier. Os compostos em solução e impregnados em resina apresentaram fluorescência. A energia dos orbitais de fronteira foi analisada por estudo eletroquímico apresentando 3,18eV a 4,66eV para o band gap. A morfologia dos filmes foi caracterizada por microscopia de força atômica. Observou-se grande estabilidade dos filmes dopados obtidos, assim como, uma sensível redução da fotoconversão. As análises de absorção e emissão dos filmes dopados apresentaram significativa redução quando comparado com compostos puros em solução, apesar de utilizar as mesmas concentrações na solução e em filmes. Para determinar a eficiência de transição eletrônica, o rendimento quântico dos filmes foi determinado. O filme, dopado com a molécula 5, apresentou as melhores propriedades para utilização em dispositivos fotovoltaicos.
3

Produção de Nanopartículas de Dióxido de Titânio com Características Janus para Uso em Dispositivos Fotovoltaicos Orgânicos

Lima, Thaíses Brunelle Santana de 31 January 2014 (has links)
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-12T18:05:01Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Thaises Brunelle de Lima.pdf: 2138377 bytes, checksum: 3d7f6e7b30968db5465114bb99e5b693 (MD5) / Made available in DSpace on 2015-03-12T18:05:01Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Thaises Brunelle de Lima.pdf: 2138377 bytes, checksum: 3d7f6e7b30968db5465114bb99e5b693 (MD5) Previous issue date: 2014 / CNPq / Partículas com caráter Janus são aquelas que apresentam características distintas em cada um de seus hemisférios. Esse tipo de partículas tem atraído muita atenção em áreas de pesquisas diversas. Neste trabalho preparamos nanopartículas de dióxido de titânio (TiO2) com característica Janus através de um método simples, chamado método de emulsão de Pickering. Estas partículas foram caracterizadas através de microscopia eletrônica de varredura. Como aplicação destas partículas, elas foram utilizadas em dispositivos fotovoltaicos orgânicos de heterojunção de volume, que consiste em uma camada ativa de materiais interpenetrados e colocados entre os eletrodos. A camada ativa era composta pelo polímero condutor Poli (1 - metoxi-4-(2-etil-hexiloxi)-p-fenilenovinileno) (MEHPPV), que funciona como doador de elétrons, e nanotubos de carbono de múltiplas camadas (MWCNT) foram usados como aceitadores de elétrons. Os dispositivos preparados foram analisados através da caracterização elétrica, onde realizamos medidas de fotocondutividade com o intuito de comparar os sistemas com camada ativa pura, com adição de nanopartículas de TiO2 e com adição das nanopartículas de TiO2 com características Janus.
4

Estudo e caracterização de dispositivos fotovoltaicos orgânicos (OPV) baseados em heterojunção de volume / Study and characterization of organic photovoltaic devices (OPV) based on bulk heterojunction

Coutinho, Douglas José 26 July 2011 (has links)
Um dos grandes desafios do século XXI está na produção de energia limpa e renovável, já que a demanda mundial por energia continuará crescendo, assim como a necessidade de despoluir o planeta e de diminuir a emissão dos gases do efeito estufa. Nesse contexto, a conversão de energia solar em elétrica coloca-se como uma excelente alternativa, e com isso a dos dispositivos fotovoltaicos. A tecnologia fotovoltaica baseada no silício e em outros semicondutores orgânicos encontra-se em estágio relativamente avançado, porém o custo de produção e de manutenção a proíbe em uso de grande escala. Mais recentemente, iniciaram-se pesquisas com filmes de semicondutores orgânicos, e a rápida melhora na performance dessas células solares a coloca como promissora ao mercado fotovoltaico. Em nosso trabalho, realizamos estudos sobre a performance de dispositivos fotovoltaicos orgânicos baseados na estrutura de heterojunção, estudando a influência de vários parâmetros na performance dos dispositivos. Usamos como camada ativa para nossos dispositivos o poli(3-hexiltiofeno) (P3HT) regiorregular, que é um polímero condutor de gap eletrônico em torno de 1,8 eV misturado ao [6,6]-fenil-C61-ácido butírico-metil ester (PCBM). Essa mistura é apropriada à dissociação dos éxcitons gerados nas cadeias poliméricas pelos fótons absorvidos porque, sendo o PCBM muito eletronegativo, ele captura o elétron do éxciton antes do processo natural de recombinação. Como esse fenômeno ocorre em todo o volume da camada ativa, o dispositivo leva o nome de heterojunção de volume. A estrutura básica que usamos foi de ITO/P3HT-PCBM/Al, isto é, o ITO como eletrodo transparente e bom injetor de buracos e o alumínio como eletrodo injetor de elétrons. Outros dispositivos foram feitos adicionando uma camada transportadora de buracos entre o ITO e o polímero ativo, o Poli(3,4-etileno dióxido-tiofeno):poliestireno-sulfonado (PEDOT:PSS) e/ou cálcio (Ca) entre a camada de alumínio e o polímero. Verificamos que a performance do dispositivo fotovoltaico é bastante alterada quando mediante o contato utilizado, a espessura da camada ativa e a temperatura em que o tratamento térmico é realizado. Investigou-se também, os mecanismos de injeção, transporte e geração de portadores sob variação de temperatura, no intervalo de 90 à 330K. Foi mostrado que, mediante a variação da temperatura, a corrente de curto circuito (JSC), é governada principalmente pela mobilidade dos portadores. A eficiência dos dispositivos desenvolvidos neste trabalho é comparável aos principais valores obtidos na atualidade. Para obtenção destes resultados, foi necessária intensa pesquisa em processamento, principalmente mantendo todas as etapas de fabricação em atmosfera controlada. / One big challenge of the humanity along the 21st Century is to produce energy based on clean and renewable sources. The energy consumption certainly will increase, as well as the necessity in decreasing the emission of greenhouse gases. In this context, solar energy becomes an important alternative for the production of electric energy, in particular, that of photovoltaic devices. Photovoltaics made of silicon and of other inorganic semiconductors are already available, but due to the high cost is not an alternative to produce energy in a large scale. More recently, the organic photovoltaics, due to their quick progress, have becoming as promising technology for the solar energy market. In this work, we studied bulk heterojunction organic photovoltaics, varying several parameters and its influence on the device performance. We used regio-regular poli(3-hexylthiophene) (P3HT), that has an electronic gap close to 1.8 eV, mixed with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). PCBM acts in order to dissociate the photogenerated exciton because, being highly electronegative, it captures the electron form the exciton before the recombination process. We used as basic structure the ITO/P3HT-PCBM/Al. ITO as transparent electrode and injector of holes, and aluminum as the electrons injector electrode. In other devices we added a thin layer of Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), as hole transport layer and/or calcium (Ca) between the Al and the polymer. We verify that the device performance changes considerably with the insertion of such layers, and with the thickness of the active layer and the annealing treatment. We also investigated phenomena related to injection, generation and transport of charge carriers, in the 90-330 K temperature range. We showed that the temperature is the main factor that governs the short-circuit current (JSC). It is important to remark that our devices exhibited similar efficiency compared to that of the literature.
5

Estudo e caracterização de dispositivos fotovoltaicos orgânicos (OPV) baseados em heterojunção de volume / Study and characterization of organic photovoltaic devices (OPV) based on bulk heterojunction

Douglas José Coutinho 26 July 2011 (has links)
Um dos grandes desafios do século XXI está na produção de energia limpa e renovável, já que a demanda mundial por energia continuará crescendo, assim como a necessidade de despoluir o planeta e de diminuir a emissão dos gases do efeito estufa. Nesse contexto, a conversão de energia solar em elétrica coloca-se como uma excelente alternativa, e com isso a dos dispositivos fotovoltaicos. A tecnologia fotovoltaica baseada no silício e em outros semicondutores orgânicos encontra-se em estágio relativamente avançado, porém o custo de produção e de manutenção a proíbe em uso de grande escala. Mais recentemente, iniciaram-se pesquisas com filmes de semicondutores orgânicos, e a rápida melhora na performance dessas células solares a coloca como promissora ao mercado fotovoltaico. Em nosso trabalho, realizamos estudos sobre a performance de dispositivos fotovoltaicos orgânicos baseados na estrutura de heterojunção, estudando a influência de vários parâmetros na performance dos dispositivos. Usamos como camada ativa para nossos dispositivos o poli(3-hexiltiofeno) (P3HT) regiorregular, que é um polímero condutor de gap eletrônico em torno de 1,8 eV misturado ao [6,6]-fenil-C61-ácido butírico-metil ester (PCBM). Essa mistura é apropriada à dissociação dos éxcitons gerados nas cadeias poliméricas pelos fótons absorvidos porque, sendo o PCBM muito eletronegativo, ele captura o elétron do éxciton antes do processo natural de recombinação. Como esse fenômeno ocorre em todo o volume da camada ativa, o dispositivo leva o nome de heterojunção de volume. A estrutura básica que usamos foi de ITO/P3HT-PCBM/Al, isto é, o ITO como eletrodo transparente e bom injetor de buracos e o alumínio como eletrodo injetor de elétrons. Outros dispositivos foram feitos adicionando uma camada transportadora de buracos entre o ITO e o polímero ativo, o Poli(3,4-etileno dióxido-tiofeno):poliestireno-sulfonado (PEDOT:PSS) e/ou cálcio (Ca) entre a camada de alumínio e o polímero. Verificamos que a performance do dispositivo fotovoltaico é bastante alterada quando mediante o contato utilizado, a espessura da camada ativa e a temperatura em que o tratamento térmico é realizado. Investigou-se também, os mecanismos de injeção, transporte e geração de portadores sob variação de temperatura, no intervalo de 90 à 330K. Foi mostrado que, mediante a variação da temperatura, a corrente de curto circuito (JSC), é governada principalmente pela mobilidade dos portadores. A eficiência dos dispositivos desenvolvidos neste trabalho é comparável aos principais valores obtidos na atualidade. Para obtenção destes resultados, foi necessária intensa pesquisa em processamento, principalmente mantendo todas as etapas de fabricação em atmosfera controlada. / One big challenge of the humanity along the 21st Century is to produce energy based on clean and renewable sources. The energy consumption certainly will increase, as well as the necessity in decreasing the emission of greenhouse gases. In this context, solar energy becomes an important alternative for the production of electric energy, in particular, that of photovoltaic devices. Photovoltaics made of silicon and of other inorganic semiconductors are already available, but due to the high cost is not an alternative to produce energy in a large scale. More recently, the organic photovoltaics, due to their quick progress, have becoming as promising technology for the solar energy market. In this work, we studied bulk heterojunction organic photovoltaics, varying several parameters and its influence on the device performance. We used regio-regular poli(3-hexylthiophene) (P3HT), that has an electronic gap close to 1.8 eV, mixed with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). PCBM acts in order to dissociate the photogenerated exciton because, being highly electronegative, it captures the electron form the exciton before the recombination process. We used as basic structure the ITO/P3HT-PCBM/Al. ITO as transparent electrode and injector of holes, and aluminum as the electrons injector electrode. In other devices we added a thin layer of Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), as hole transport layer and/or calcium (Ca) between the Al and the polymer. We verify that the device performance changes considerably with the insertion of such layers, and with the thickness of the active layer and the annealing treatment. We also investigated phenomena related to injection, generation and transport of charge carriers, in the 90-330 K temperature range. We showed that the temperature is the main factor that governs the short-circuit current (JSC). It is important to remark that our devices exhibited similar efficiency compared to that of the literature.
6

Fabricação e caracterização de células solares baseadas em polímeros orgânicos low-bandgap nanoestruturados / Fabrication and characterization of organic solar cells based on nanostructured low-bandgap polymers

Silva, Edilene Assunção da 05 July 2018 (has links)
Submitted by EDILENE ASSUNÇÃO DA SILVA (edileneass@gmail.com) on 2018-10-15T12:58:45Z No. of bitstreams: 1 Thesis final corrected version_Silva.pdf: 5038032 bytes, checksum: 096e39873786dd29f13d8faedd460bb8 (MD5) / Approved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2018-10-15T17:17:09Z (GMT) No. of bitstreams: 1 silva_ea_dr_bauru.pdf: 5038032 bytes, checksum: 096e39873786dd29f13d8faedd460bb8 (MD5) / Made available in DSpace on 2018-10-15T17:17:09Z (GMT). No. of bitstreams: 1 silva_ea_dr_bauru.pdf: 5038032 bytes, checksum: 096e39873786dd29f13d8faedd460bb8 (MD5) Previous issue date: 2018-07-05 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Les cellules solaires polymériques attirent un grand intérêt dans ce domaine de recherche, en raison du faible coût, du procédé de fabrication de grandes surfaces, des matériaux de manutention légers et de la possibilité de leur fabrication par diverses techniques. Pour une bonne efficacité des dispositifs photovoltaïques, la couche active doit contenir une bonne absorption de la lumière du soleil. En termes de bandgap,cela signifie que plus le bandgap est petit, plus le flux de photons absorbés est grand. Une manière d'accomplir ceci avec les matériaux polymères est la synthèse d'un copolymère alterné dans lequel le bandgap optique est diminué, ce que l'on appelle des polymères low-bandgap. L'organisation structurelle de la couche active joue un rôle important dans la performance des dispositifs, y compris les dispositifs photovoltaïques, et la technique Langmuir-Schaefer (LS) permet de fabriquer des films nanostructurés avec contrôle de l'épaisseur, qui peuvent servir de base pour construire de meilleurs dispositifs. Dans ce contexte, l'objectif de ce travail était de synthétiser des polymères low-bandgap et ensuite de fabriquer et caractériser des films LS de ces polymères et leurs mélanges avec un dérivé de fullerène, le PCBM, pour leur application en tant que couche active de cellules solaires. Les films LS des polymères et leurs mélanges avec PCBM ont été fabriqués et des mesures de caractérisation ont été effectuées. Ces films ont été caractérisés par des mesures électriques (courant vs tension, spectroscopie d'impédance et voltampérométrie cyclique), morphologiques (microscopie à force atomique) et optiques (UV-visible, diffusion Raman et transmission infrarouge). Par les films de Langmuir et les mesures morphologiques, il a été possible d'observer les caractéristiques spécifiques concernant la conformation de chaque polymère sous forme de film. Des mesures optiques confirment l'absorption aux longueurs d'onde élevées attendues pour ces polymères. Dans les mesures électriques, les résultats ont montré des conductivités différentes pour les mêmes matériaux lorsque les types d'électrodes ont été changés. Les dispositifs photovoltaïques des films LS fabriqués n'ont pas atteint de bonnes valeurs d'efficicacité. Les films spincoating de ces polymères testés en tant que couche active des dispositifs, sous atmosphère contrôlée, ont montré un’efficacité allant jusqu'à 0,6%. / Células solares poliméricas atraem grande interesse nessa área de pesquisa, devido ao baixo custo, processo de fabricação de grandes áreas, materiais de manuseio leves e a possibilidade de sua fabricação por diversas técnicas. Para uma boa eficiência dos dispositivos fotovoltaicos, a camada ativa deve conter uma boa absorção da luz solar. Em termos de bandgap, isto quer dizer que quanto menor o bandgap maior o fluxo de fótons absorvidos. Uma maneira de realizar isto com os materiais poliméricos é a síntese de um polímero no qual o bandgap óptico tem a capacidade de aumentar a captura da luz solar, os chamados polímeros low-bandgap. A organização estrutural da camada ativa possui um papel importante na performance de dispositivos, inclusive dos fotovoltaicos, e a técnica Langmuir-Schaefer (LS) proporciona a capacidade de fabricar filmes nanoestruturados e com controle de espessura, podendo servir de base para construção de melhores dispositivos. Dentro deste contexto, o objetivo deste trabalho foi sintetizar polímeros low-bandgap e, posteriormente fabricar e caracterizar filmes LS destes polímeros e de suas blendas com um derivado de fulereno, o PCBM, para a aplicação dos mesmos como camada ativa de células solares. Foram fabricados filmes LS dos polímeros e de suas misturas com PCBM e realizadas medidas de caracterização. Estes filmes foram caracterizados por meio de medidas elétricas (corrente vs. Tensão, espectroscopia de impedância e voltametria cíclica), morfológica (microscopia de força atômica) e óptica (Ultravioleta-Visível, Espalhamento Raman e transmissão no infravermelho). Com os filmes de Langmuir e as medidas morfológicas foi possível observar as características específicas de como é a conformação de cada polímero na forma de filme. As medidas ópticas confirmam a absorção em altos comprimentos de onda esperados para estes polímeros. Nas medidas elétricas os resultados mostraram diferentes condutividades para os mesmos materiais quando mudado os tipos de eletrodos. Os dispositivos fotovoltaicos dos filmes LS fabricados não alcançaram bons valores de eficiência. Filmes spin-coating destes polímeros testados como camada ativa dos dispositivos, em atmosfera controlada, revelaram eficiência de até 0.6%. / Polymeric solar cells attract great interest in this area of research due to the potential low cost, large area fabrication process, lightweight physical feature and the possibility of fabricating these cells by several techniques. To achieve good efficiency in the photovoltaic devices the active layer must have an efficient absorption of sunlight. In terms of bandgap, this means that the smaller the bandgap the greater the flux of photons absorbed. One way to accomplish this, with the polymeric materials, is the synthesis of a polymer in which the optical bandgap has the ability to increase the capture of sunlight, the so-called low-bandgap polymers. The structural organization of the active layer plays an important role in the performance of devices, including in photovoltaic devices, and the Langmuir-Schaefer (LS) technique provides the ability to manufacture nanostructured films with thickness control, which can serve as a basis for building better devices. In this context, the aim of this work was to synthesize low-bandgap polymers for later manufacturing and characterization of LS films of these polymers and their blends with a fullerene derivative, PCBM, and test them as active layer of solar cells. LS films of such polymers and their blends with PCBM were made and characterization measurements were performed. These films were characterized by electrical (current vs. voltage, impedance spectroscopy and cyclic voltammetry), morphology (atomic force microscopy) and optical (ultraviolet-visible, Raman scattering and infrared) measurements. Through the Langmuir films and the morphological measurements, it was possible to observe the specific characteristics of how it is the conformation of each polymer in film form. Optical measurements confirmed the absorption at high wavelengths expected for these polymers. In the electrical measurements, the results showed different conductivities for the same materials when the types of electrodes were changed. The photovoltaic devices manufactured from LS technique have not reached good efficiency values. When spin-coated active layers were tested as OPV devices in a controlled atmosphere the efficiency achieved up to 0.6% / CAPES DS / CNPq SWE 205489/2014-1
7

Fabrication et caractérisation de cellules solaires à base de polymères organiques low-bandgap nanostructurés / Fabrication and characterization of organic solar cells based on nanostructured low-bandgap polymers / Fabricação e caracterização de células solares baseadas em polímeros orgânicos low-bandgap nanoestruturados

Assunção da Silva, Edilene 05 July 2018 (has links)
Les cellules solaires polymériques attirent un grand intérêt dans ce domaine de recherche, en raison du faible coût, du procédé de fabrication de grandes surfaces, des matériaux de manutention légers et de la possibilité de leur fabrication par diverses techniques. Pour une bonne efficacité des dispositifs photovoltaïques, la couche active doit contenir une bonne absorption de la lumière du soleil. En termes de bandgap,cela signifie que plus le bandgap est petit, plus le flux de photons absorbés est grand. Une manière d'accomplir ceci avec les matériaux polymères est la synthèse d'un copolymère alterné dans lequel le bandgap optique est diminué, ce que l'on appelle des polymères low-bandgap. L'organisation joue un rôle important dans la performance des dispositifs, y compris les dispositifs photovoltaïques, et la technique Langmuir-Schaefer (LS) permet de fabriquer des films nanostructurés avec contrôle de l'épaisseur, qui peuvent servir de base pour construire de meilleurs dispositifs. Dans ce contexte, l'objectif de ce travail était de synthétiser des polymères low-bandgap et ensuite de fabriquer et caractériser des films LS de ces polymères et leurs mélanges avec un dérivé de fullerène, le PCBM, pour leur application en tant que couche active de cellules solaires. Les films LS des polymères et leurs mélanges avec PCBM ont été fabriqués et des mesures de caractérisation ont été effectuées. Ces films ont été caractérisés par des mesures électriques (courant vs tension, spectroscopie d'impédance et voltampérométrie cyclique), morphologiques (microscopie à force atomique) et optiques (UV-visible, diffusion Raman et transmission infrarouge). Par les films de Langmuir et les mesures morphologiques, il a été possible d'observer les caractéristiques spécifiques concernant la conformation de chaque polymère sous forme de film. Des mesures optiques confirment l'absorption aux longueurs d'onde élevées attendues pour ces polymères. Dans les mesures électriques, les résultats ont montré des conductivités différentes pour les mêmes matériaux lorsque les types d'électrodes ont été changés. Les dispositifs photovoltaïques des films LS fabriqués n'ont pas atteint de bonnes valeurs d'efficacité. Les films spin-coating de ces polymères testés en tant que couche active des dispositifs, sous atmosphère contrôlée, ont montré unefficacité allant jusqu'à 0,6%. / Polymeric solar cells attract great interest in this area of research due to the potential low cost, large area fabrication process, light weight physical feature and the possibility of fabricating these cells by several techniques. To achieve good efficiency in the photovoltaic devices the active layer must have an efficient absorption of sunlight. In terms of bandgap, this means that the smaller the bandgap the greater the flux of photons absorbed. One way to accomplish this, with the polymeric materials, is the synthesis of a polymer in which the optical bandgap has the ability to increase the capture of sunlight, the so-called low-bandgap polymers. The organization plays an important role in the performance of devices, including in photovoltaic devices, and the Langmuir-Schaefer (LS) technique provides the ability to manufacture nanostructured films with thickness control, which can serve as a basis for building better devices. In this context, the aim of this work was to synthesize low-bandgap polymers for later manufacturing and characterization of LS films of these polymers and their blends with a fullerene derivative, PCBM, and test them as active layer of solar cells. LS films of such polymers and their blends with PCBM were made and characterization measurements were performed. These films were characterized by electrical (current vs. voltage, impedance spectroscopy and cyclic voltammetry), morphology (atomic force microscopy) and optical (ultraviolet-visible, Raman scattering and infrared) measurements. Through the Langmuir films and the morphological measurements, it was possible to observe the specific characteristics of how it is the conformation of each polymer in film form. Optical measurements confirmed the absorption at high wavelengths expected for these polymers. In the electrical measurements the results showed different conductivities for the same materials when the types of electrodes were changed. The photovoltaic devices manufactured from LS technique have not reached good efficiency values. When spin-coated active layers were teste as OPV devices in a controlled atmosphere the efficiency achieved up to 0.6%. / Células solares poliméricas atraem grande interesse nessa área de pesquisa, devido ao baixo custo, processo de fabricação de grandes áreas, materiais de manuseio leves e a possibilidade de sua fabricação por diversas técnicas. Para uma boa eficiência dos dispositivos fotovoltaicos, a camada ativa deve conter uma boa absorção da luz solar. Em termos de bandgap, isto quer dizer que quanto menor o bandgap maior o fluxo de fótons absorvidos. Uma maneira de realizar isto com os materiais poliméricos é a síntese de um polímero no qual o bandgap óptico tem a capacidade de aumentar a captura da luz solar, os chamados polímeros low-bandgap. A organização possui um papel importante na performance de dispositivos, inclusive dos fotovoltaicos, e a técnica Langmuir-Schaefer (LS) proporciona a capacidade de fabricar filmes nanoestruturados e com controle de espessura, podendoservir de base para construção de melhores dispositivos. Dentro deste contexto, o objetivo deste trabalho foi sintetizar polímeros low-bandgap e, posteriormente fabricar e caracterizar filmes LS destes polímeros e de suas blendas com um derivado de fulereno, o PCBM, para a aplicação dos mesmos como camada ativa de células solares. Foram fabricados filmes LS dos polímeros e de suas misturas com PCBM e realizadas medidas de caracterização. Estes filmes foram caracterizados por meio de medidas elétricas (corrente vs. Tensão, espectroscopia de impedância e voltametria cíclica), morfológica (microscopia de força atômica) e óptica (Ultravioleta-Visível, Espalhamento Raman e transmissão no infravermelho). Com os filmes de Langmuir e as medidas morfológicas foi possível observar as características específicas de como é a conformação de cada polímero na forma de filme. As medidas ópticas confirmam a absorção em altos comprimentos de onda esperados para estes polímeros. Nas medidas elétricas os resultados mostraram diferentes condutividades para os mesmos materiais quando mudado os tipos de eletrodos. Os dispositivos fotovoltaicos dos filmes LS fabricados não alcançaram bons valores de eficiência. Filmes spin-coating destes polímeros testados como camada ativa dos dispositivos, em atmosfera controlada, revelaram eficiência de até 0.6%.

Page generated in 0.1105 seconds