Spelling suggestions: "subject:"langmuirschaefer"" "subject:"langmuirschen""
1 |
Fabrication et caractérisations électriques de films minces pour les cellules solaires organiques / Fabrication and electrical characterizations of thin films for organic solar cells / Fabricação e caracterização elétrica de células solares a partir de filmes finos orgânicosBraunger, Maria Luisa 19 June 2015 (has links)
Dans le domaine du photovoltaïque organique, il y a un effort continu pour améliorer l'efficacité des dispositifs. Afin d'atteindre cet objectif, il est nécessaire d'évaluer les caractéristiques qui influencent leur performance. Bien que les films minces de polymères conjugués (dérivés de polythiophène et polymères à faible bande interdite) aient été largementétudiés pour des applications dans des cellules photovoltaïques, peu d'études concernent l'influence de la nanostructuration des films dans de tels dispositifs. Dans ce contexte, l'objectif général de ce travail était d'analyser l'influence de la technique de dépôt de couches minces de dérivés de polythiophène dans des dispositifs photovoltaïques organiques. Le technique de dépôt de Langmuir-Schaefer (LS) a été comparée à celle de spin-coating, plus fréquente. Les films de polythiophène ont été caractérisés par des mesures de transport électrique (courant-tension, photoconductivité, voltampérométrie cyclique et spectroscopied'impédance), spectroscopies optique (UV-visible et fluorescence) et des techniquesmorphologiques (à force atomique et techniques de microscopie à angle de Brewster, etprofilométrie). A partir des mesures électriques à courant continu, il peut être observé que lesfilms LS sont plus conducteurs que ceux obtenus par spin-coating. D’un point de vuemorphologique, il s’avère que la technique de dépôt influence la performance du dispositifphotovoltaïque, en raison de l'organisation et de la nanostructuration fournies par la techniquede la LS. Une étude préliminaire a également été réalisée sur des films de polymères à faiblebande interdite à base de cyclopentadithiophène, réalisés par la technique de Langmuir-Blodgett. / In the area of organic photovoltaics, there is a continuous effort to improve the efficiency of the devices. In order to reach this goal, it is necessary to evaluate the characteristics that influence their performance. Although thin films of conjugated polymers (polythiophene derivatives and low bandgap polymers) have been widely investigated for applications in photovoltaic devices, few studies relate the influence of the nanostructuring of the films in such devices. In this context, the general objective of this work was to analyze the influence of deposition technique of thin films of polythiophene derivatives in organic photovoltaic devices. The Langmuir-Schaefer (LS) technique was compared to the more common spin-coating. The polythiophene films were characterized by electrical transport measurements (current vs. voltage, photoconductivity, cyclic voltammetry and impedance spectroscopy), optical spectroscopy (UV-visible and fluorescence) and morphologicaltechniques (atomic force and Brewster angle microscopies, and perfilometry). From the direct current electrical measurements, it could be observed that the LS films are more conducting than the spin-coating ones. From the morphologic point of view, the deposition technique revealed itself to influence on the photovoltaic device’s performance, due to the organization and nanostructuring provided by the LS technique. Preliminary studies were also undertaken on thin films made of low bandgap polymers based on cyclopentadithiophene by using the Langmuir-Blodgett technique. / Na área de fotovoltaicos orgânicos há um esforço contínuo no aumento da eficiência dos dispositivos. Para alcançar esse objetivo, é necessária a avaliação das características que influenciam seu desempenho. Embora filmes finos de polímeros conjugados (derivados do politiofeno e polímeros de baixo bandgap) tenham sido amplamente estudados para aplicação em dispositivos fotovoltaicos, são encontrados poucos estudos investigando a influência da nanoestruturação dos filmes nestes dispositivos. Dentro deste contexto, o objetivo geral deste trabalho foi analisar a influencia da técnica de deposição de filmes finos de derivados do politiofeno em um dispositivo fotovoltaico orgânico. Para isto utilizamos a técnica de Langmuir-Schaefer (LS) em comparação à técnica spin-coating comumente utilizada. Os filmes de politiofeno foram caracterizados por medidas de transporte elétrico (corrente vs. tensão, fotocondutividade, voltametria cíclica e espectroscopia de impedância), espectroscopia óptica (UV-visível e fluorescência) e técnicas morfológicas (microscopias de força atômica e de ângulo de Brewster, e perfilometria). Através das medidas elétricas em corrente contínua observou-se que os filmes LS apresentam maior condutividade elétrica quando comparados com filmes spin-coating. Do ponto de vista morfológico, a técnica de deposição utilizada mostrou ter influencia no desempenho do dispositivo fotovoltaico, devido à organização e nanoestruturação provida pela técnica LS. Estudos preliminares foram também realizados em filmes finos de polímeros de baixo bandgap baseados em ciclopentaditiofeno usando a técnica de Langmuir-Blodgett.
|
2 |
Fabricação e caracterização elétrica de filmes mistos de politiofeno: espectroscopia de impedância / Fabrication and electrical characterization of mixed polythiophene films: impedance spectroscopyCitolino, Lucas Vinicius de Lima [UNESP] 21 July 2017 (has links)
Submitted by Lucas Vinicius de Lima Citolino null (citolinolucas@gmail.com) on 2017-09-11T19:48:09Z
No. of bitstreams: 1
Dissertacao_defesa_Citolinofinal.pdf: 3971068 bytes, checksum: 1fa455e43ce15f41cd5a185e3911cb10 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-11T20:31:00Z (GMT) No. of bitstreams: 1
citolino_lvl_me_prud.pdf: 3971068 bytes, checksum: 1fa455e43ce15f41cd5a185e3911cb10 (MD5) / Made available in DSpace on 2017-09-11T20:31:00Z (GMT). No. of bitstreams: 1
citolino_lvl_me_prud.pdf: 3971068 bytes, checksum: 1fa455e43ce15f41cd5a185e3911cb10 (MD5)
Previous issue date: 2017-07-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O diodo Schottky orgânico permite o estudo da camada ativa e de efeitos de interfaces dos contatos elétricos, além da aplicação em estudos mais avançados, como por exemplo, em células solares, transistores e diodos orgânicos emissores de luz (OLEDs). Nestes dispositivos, dentre os parâmetros chave no funcionamento dos dispositivos destaca-se os tipos de eletrodos, a morfologia e a organização da camada ativa no estado sólido. Os politiofenos por apresentarem fácil processabilidade e notáveis propriedades do estado sólido, como aumento de condutividade elétrica, possuem grande utilização como camada ativa na forma de filmes finos. Assim a técnica de Langmuir-Schaefer (LS) se destaca, pois proporciona maior organização a nível molecular e controle na espessura e uniformidade nos filmes finos de politiofeno. Dentro deste contexto, o objetivo deste trabalho foi fabricar filmes LS de poli(3-hexiltiofeno) (P3HT) acrescido com ácido esteárico (SA), visando uma aplicação como camada ativa em diodos Schottky orgânicos para um estudo tanto das propriedades elétricas da camada ativa quanto das diferentes interfaces através das caracterizações elétricas. Para fabricação dos filmes finos e estudos das isotermas de pressão superficial (π-A) foi utilizada uma cuba de Langmuir KSV 5000. Os eletrodos inferiores (ITO, alumínio e ouro) e superiores (alumínio e ouro) foram obtidos por evaporação térmica a vácuo. As medidas de absorção, crescimento dos filmes e morfologia foram realizadas através da espectroscopia de absorção óptica UV-visível e microscopia de força atômica, respectivamente. As caracterizações elétricas foram realizadas através de medidas de corrente continua (dc) utilizando uma fonte Keithley modelo 238 e as medidas de corrente alternada (ac) foram realizadas através do analisador de impedâncias Solartron 1260A. As isotermas π-A mostraram um forte indício de que o polímero se localiza em cima de uma camada de filme de SA na interface ar-água, tornando o filme fino mais flexível. As propriedades de absorção mostraram que o SA favorece a formação de filmes finos mais organizados e com crescimento linear na deposição nos substratos. Nas medidas dc, os diodos Schottky com camadas ativas sendo os filmes de P3HT-SA apresentaram maior valores de corrente elétrica, devido o SA melhorar a organização dos filmes, assim favorecendo o transporte de portadores de carga pela camada ativa. Através das medidas ac, conclui-se que o SA além de melhorar a organização dos filmes finos, também melhora a interface entre o filme de P3HT-SA e o Al, favorecendo assim a injeção de elétrons do Al no P3HT. / The organic Schottky diode allows the study of the active layer and effects at interfaces of electric contacts, besides the application in advanced studies, such as solar cells, transistors and organic light emitting diodes (OLEDs). In these devices, among the key parameters of the operation of the devices, stand out the electrode types, the morphology and the active layer organization in the solid state. The polythiophenes have wide use as active layer of organic devices in the form of thin films because of their easy processability and remarkable properties in solid state, such as increased electrical conductivity. The Langmuir-Schaefer (LS) technique is highlighted because it provides molecular organization and control in the thickness and uniformity in the fabrication of polythiophene thin films. In this context, the aim of this work was to fabricate LS films of poly (3-hexylthiophene) (P3HT) mixed with stearic acid (SA), to apply as an active layer in organic Schottky diodes in order to study the electrical properties of active layers and different interfaces through electrical characterization. A Langmuir trough KSV 5000 was used to fabricate the thin films (active layers) and to realize studies of pressure isotherms (π-A). By physical vapor deposition the bottom electrodes (ITO, aluminum and gold) and top electrodes (aluminum and gold) were obtained. Measurements of absorption, growth and morphology of thin films were performed using Ultraviolet-visible spectroscopy and atomic force microscopy, respectively. Electrical characterizations were carried out using direct current (dc) measurements employing a Keithley 238 and the alternating current (ac) measurements were performed employing a Solartron 1260A impedance analyzer. The π-A isotherms showed a strong indication that the polymer is located above the SA layer at air-water interface, making the thin film more flexible. The absorption properties showed that the SA favors the formation of thin films more organized and with linear growth in the deposition onto substrates. In the dc measurements, the Schottky diodes with active layers being the P3HT-SA films presented higher values of current, due to the SA to improve the organization in the thin films, thus favoring the transport of charge carriers inside of active layer. Through ac measurements, it is concluded that the SA besides improving the organization of thin films, also improves the interface between P3HT-SA film and Al, thus favoring the injection of electrons in P3HT by Al electrode.
|
3 |
Fabrication et caractérisation de cellules solaires à base de polymères organiques low-bandgap nanostructurés / Fabrication and characterization of organic solar cells based on nanostructured low-bandgap polymers / Fabricação e caracterização de células solares baseadas em polímeros orgânicos low-bandgap nanoestruturadosAssunção da Silva, Edilene 05 July 2018 (has links)
Les cellules solaires polymériques attirent un grand intérêt dans ce domaine de recherche, en raison du faible coût, du procédé de fabrication de grandes surfaces, des matériaux de manutention légers et de la possibilité de leur fabrication par diverses techniques. Pour une bonne efficacité des dispositifs photovoltaïques, la couche active doit contenir une bonne absorption de la lumière du soleil. En termes de bandgap,cela signifie que plus le bandgap est petit, plus le flux de photons absorbés est grand. Une manière d'accomplir ceci avec les matériaux polymères est la synthèse d'un copolymère alterné dans lequel le bandgap optique est diminué, ce que l'on appelle des polymères low-bandgap. L'organisation joue un rôle important dans la performance des dispositifs, y compris les dispositifs photovoltaïques, et la technique Langmuir-Schaefer (LS) permet de fabriquer des films nanostructurés avec contrôle de l'épaisseur, qui peuvent servir de base pour construire de meilleurs dispositifs. Dans ce contexte, l'objectif de ce travail était de synthétiser des polymères low-bandgap et ensuite de fabriquer et caractériser des films LS de ces polymères et leurs mélanges avec un dérivé de fullerène, le PCBM, pour leur application en tant que couche active de cellules solaires. Les films LS des polymères et leurs mélanges avec PCBM ont été fabriqués et des mesures de caractérisation ont été effectuées. Ces films ont été caractérisés par des mesures électriques (courant vs tension, spectroscopie d'impédance et voltampérométrie cyclique), morphologiques (microscopie à force atomique) et optiques (UV-visible, diffusion Raman et transmission infrarouge). Par les films de Langmuir et les mesures morphologiques, il a été possible d'observer les caractéristiques spécifiques concernant la conformation de chaque polymère sous forme de film. Des mesures optiques confirment l'absorption aux longueurs d'onde élevées attendues pour ces polymères. Dans les mesures électriques, les résultats ont montré des conductivités différentes pour les mêmes matériaux lorsque les types d'électrodes ont été changés. Les dispositifs photovoltaïques des films LS fabriqués n'ont pas atteint de bonnes valeurs d'efficacité. Les films spin-coating de ces polymères testés en tant que couche active des dispositifs, sous atmosphère contrôlée, ont montré unefficacité allant jusqu'à 0,6%. / Polymeric solar cells attract great interest in this area of research due to the potential low cost, large area fabrication process, light weight physical feature and the possibility of fabricating these cells by several techniques. To achieve good efficiency in the photovoltaic devices the active layer must have an efficient absorption of sunlight. In terms of bandgap, this means that the smaller the bandgap the greater the flux of photons absorbed. One way to accomplish this, with the polymeric materials, is the synthesis of a polymer in which the optical bandgap has the ability to increase the capture of sunlight, the so-called low-bandgap polymers. The organization plays an important role in the performance of devices, including in photovoltaic devices, and the Langmuir-Schaefer (LS) technique provides the ability to manufacture nanostructured films with thickness control, which can serve as a basis for building better devices. In this context, the aim of this work was to synthesize low-bandgap polymers for later manufacturing and characterization of LS films of these polymers and their blends with a fullerene derivative, PCBM, and test them as active layer of solar cells. LS films of such polymers and their blends with PCBM were made and characterization measurements were performed. These films were characterized by electrical (current vs. voltage, impedance spectroscopy and cyclic voltammetry), morphology (atomic force microscopy) and optical (ultraviolet-visible, Raman scattering and infrared) measurements. Through the Langmuir films and the morphological measurements, it was possible to observe the specific characteristics of how it is the conformation of each polymer in film form. Optical measurements confirmed the absorption at high wavelengths expected for these polymers. In the electrical measurements the results showed different conductivities for the same materials when the types of electrodes were changed. The photovoltaic devices manufactured from LS technique have not reached good efficiency values. When spin-coated active layers were teste as OPV devices in a controlled atmosphere the efficiency achieved up to 0.6%. / Células solares poliméricas atraem grande interesse nessa área de pesquisa, devido ao baixo custo, processo de fabricação de grandes áreas, materiais de manuseio leves e a possibilidade de sua fabricação por diversas técnicas. Para uma boa eficiência dos dispositivos fotovoltaicos, a camada ativa deve conter uma boa absorção da luz solar. Em termos de bandgap, isto quer dizer que quanto menor o bandgap maior o fluxo de fótons absorvidos. Uma maneira de realizar isto com os materiais poliméricos é a síntese de um polímero no qual o bandgap óptico tem a capacidade de aumentar a captura da luz solar, os chamados polímeros low-bandgap. A organização possui um papel importante na performance de dispositivos, inclusive dos fotovoltaicos, e a técnica Langmuir-Schaefer (LS) proporciona a capacidade de fabricar filmes nanoestruturados e com controle de espessura, podendoservir de base para construção de melhores dispositivos. Dentro deste contexto, o objetivo deste trabalho foi sintetizar polímeros low-bandgap e, posteriormente fabricar e caracterizar filmes LS destes polímeros e de suas blendas com um derivado de fulereno, o PCBM, para a aplicação dos mesmos como camada ativa de células solares. Foram fabricados filmes LS dos polímeros e de suas misturas com PCBM e realizadas medidas de caracterização. Estes filmes foram caracterizados por meio de medidas elétricas (corrente vs. Tensão, espectroscopia de impedância e voltametria cíclica), morfológica (microscopia de força atômica) e óptica (Ultravioleta-Visível, Espalhamento Raman e transmissão no infravermelho). Com os filmes de Langmuir e as medidas morfológicas foi possível observar as características específicas de como é a conformação de cada polímero na forma de filme. As medidas ópticas confirmam a absorção em altos comprimentos de onda esperados para estes polímeros. Nas medidas elétricas os resultados mostraram diferentes condutividades para os mesmos materiais quando mudado os tipos de eletrodos. Os dispositivos fotovoltaicos dos filmes LS fabricados não alcançaram bons valores de eficiência. Filmes spin-coating destes polímeros testados como camada ativa dos dispositivos, em atmosfera controlada, revelaram eficiência de até 0.6%.
|
4 |
DEVELOPMENT OF THERMALLY CONTROLLED LANGMUIR–SCHAEFER CONVERSION TECHNIQUES FOR SUB-10-NM HIERARCHICAL PATTERNING ACROSS MACROSCOPIC SURFACE AREASTyler R Hayes (9754796) 14 December 2020 (has links)
<div> As hybrid 2D materials are incorporated into next-generation device designs, it becomes more and more pertinent that methods are being developed which can facilitate large-area structural control of noncovalent monolayers assembled at 2D material interfaces. Noncovalent functionalization is often leveraged to modulate the physical properties of the underlying 2D material without disrupting the extended electronic delocalization networks intrinsic to its basal plane. The bottom-up nanofabrication technique of self-assembly permits sub-10-nm chemical patterning with low operational costs and relatively simple experimental designs.</div><div> The Claridge Group is interested in leveraging the unique chemical orthogonality intrinsic to the cellular membrane as a means of creating sub-10-nm hydrophilic-hydrophobic striped patterns across 2D material interfaces for applications ranging from interfacial wetting to large-area molecular templates to guide heterogeneous nanoparticle assembly. Using Langmuir–Schaefer conversion, standing phases of polymerizable amphiphiles at the air-water interfaces of a Langmuir trough are converted (through rotation) to lying-down phases on 2D material substrates. Using room temperature substrates, transfer of amphiphiles to a lowered substrate results in small domains and incomplete surface coverage.</div><div> Recognizing that heating the substrate during the LS conversion process may lower the energy barriers to molecular reorientation, and promote better molecular domain assembly, we developed a thermally controlled heated transfer stage that can maintain the surface temperature of the substrate throughout the deposition process. We found that heating during transfer results in the assembly of domains with edge lengths routinely an order of magnitude larger than transfer using room temperature substrates that are more stable towards rigorous repeat washing cycles with both polar and nonpolar solvents.</div><div> To promote the effectiveness of the LS conversion technique beyond academic environments for the noncovalent functionalization 2D material substrates for next-generation device designs, we designed and built a thermally controlled rotary stage to address the longstanding scaling demerit of LS conversion. First, we report the development of a flexible HOPG substrate film that can wrap around the perimeter of the heated disk and can be continuously cycled through the Langmuir film. We found that thermally controlled rotary (TCR) LS conversion can achieve nearly complete surface coverage at the slowest translation speed tested (0.14 mm/s). TCR–LS facilitates the assembly of domains nearly 10,000 μm<sup>2</sup> which were subsequently used as molecular templates to guide the assembly of ultranarrow AuNWs from solution in a non-heated rotary transfer step. Together, these findings provide the foundation for the use of roll-to-roll protocols to leverage LS conversion for noncovalent functionalization of 2D materials. A true roll-to-roll thermally controlled LS conversion system may prove to be advantageous and a cost-efficient process in applications that require large areas of functional surface, or benefit from long-range ordering within the functional film.</div>
|
5 |
Étude par microscopie à force atomique de la séparation de phase latérale de monocouches Langmuir-Schaefer de DPPC/DLPCSanchez, Jacqueline January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
6 |
Tailoring Nanoscopic and Macroscopic Noncovalent Chemical Patterns on Layered Materials at Sub-10 nm ScalesJae Jin Bang (5929496) 20 December 2018 (has links)
<p></p><p></p><p>The unprecedented
properties of 2D materials such as graphene and MoS2 have been researched
extensively [1,2] for a range of applications including nanoscale electronic and
optoelectronic devices [3–6]. Their unique physical and electronic properties
promise them as the next generation materials for electrodes and other
functional units in nanostructured devices. However, successful incorporation
of 2D materials into devices entails development of high resolution patterning
techniques that are applicable to 2D materials. Patterning at the sub-10 nm
scale is particularly of great interest as the next technology nodes require
patterning of (semi)conductors and insulators at 7 nm and 5 nm scales for
nanoelectronics. It will also benefit organic photovoltaic cells as phase
segregation of p/n-type semiconducting polymers on 2D electrodes at
length scales smaller than the typical exciton diffusion length (10 nm)</p>
<p>is expected to improve
the charge separation efficiency [7].</p><br><p></p><p></p><p>Characterizing locally
modulated properties of non-ovalently functionalized 2D materials requires
high-resolution imaging techniques capable of extracting measurements of
various physical/chemical properties. One such method is scanning probe
microscopy (SPM) [18–21]. In Chapter 1, we present a brief review of SPM
modalities, some of which are used to characterize interfacial properties, such
as conductivity and local contact potential differences that can be modulated
by amphiphilic assemblies [17, 22]. Atomic force microscopy (AFM) is one of
main techniques that we use to determine topography. All imaging in this work
were performed in attractive AC mode [23,24] in order to minimize disruption to
the self-assembly of the amphiphiles by the scanning tip.</p><br><p></p><p></p><p>One challenge of using
SAMs for locally modulated functionalization is that the proximity to the
nonpolar interface can modify the behavior of the functionalities present on
the surface in conjunction with the steric hindrance of 2D molecular
assemblies. For instance, ionizable functional groups, one of the strongest
local modulators of surface chemistry, undergo substantial pKa shifts (in some
cases, > 5 units) at nonpolar interfaces, limiting their ability to ionize.
In order to apply molecular assembly to create 2D chemical patterns, we needed
to design alternative structures that can avoid such penalties against the
intrinsic properties of functionalities present in the assemblies. Among
amphiphiles, we observed that the chiral centers of phospholipids have the
potential of elevating the terminal functional group in the head from the surface
for improved accessibility. We refer to this type of assembly as a ’sitting’
phase. Chapter 2 describes sitting phase assembly of phospholipids; the
projection of the terminal functionality allows it to maintain solution
phase-like behavior while the dual alkyl tails provide additional stabilizing
interactions with the substrates. Given the diversity of phospholipid
architecture [25], the sitting phase assembly suggests the possibility of
greatly diversifying the orthogonality of the chemical patterns, allowing
highly precise control over surface functionalities.</p><br><p></p><p></p><p>While a variety of
methods including drop-casting [26–28] and microcontact printing [29] have been
used previously by others for noncovalent assembly of materials on the surface,
they mostly address patterning scale in the sub-μm range. Here, we utilize
Langmuir-Schaefer(LS) transfer, which has been historically used to transfer
standing phase multilayers [30], and lying-down domains of PCDA at < 100 nm
scales in the interest of molecular electronics [14, 31–33], as our sample
preparation technique. LS transfer is remarkable in that the transferred
molecules relinquish their pre-existing interactions in the standing phase at
air-water interface to undergo ∼ 90◦
rotation and assemble into the striped phase on a substrate. This introduces
the possibility of modulating local transfer rate across the substrate by
manipulating local environment of the molecules. Thus, LS transfer has the
potential to offer spatial control over the noncovalent chemical
functionalization of the 2D substrate, essential in device applications.</p><br><p></p><p></p><p>In Chapter 3 and 4, We
make comparative studies of various experimental factors such as surface pressure,
temperature and molecular interactions that affect the efficiency of LS
conversion. Considering the energetics of the transfer process, we predicted
that the rate of transfer from the air-water interface to the substrate should
be the highest from the regions around defects, which would be the
energetically</p>
<p>least stable regions of
the Langmuir film [34, 35]. In Langmuir films, two phases of lipid
assemblies—liquid expanded (LE) and liquid condensed (LC)—often coexist at the
low surface pressures (< 10 mN/m) used for sample preparation. Hence, we
hypothesized that the microscale structural heterogeneity of Langmuir films
could be translated into microscale patterns in the transferred film on HOPG.
We compare the transfer rates between LE and LC phases and investigate the
impacts of physical conditions during LS transfer such as temperature, packing
density, dipping rate and contact time to conclude that local destabilization
of Langmuir films leads to increased transfer efficiency. (Chapter 3)</p><p><br></p><p></p><p>As in the case of lipid
membranes that reorganize routinely based on the structure of the constituent
molecules [36–38], the structure of Langmuir films is strongly dependent on the
molecular structures of the constituent molecules [39–43]. Accordingly, we
expected the molecular structures/interactions to provide additional control
over the LS transfer process. In Chapter 4, we compare domain morphologies and
the average coverages between three single chain amphiphiles and two
phospholipids, each</p><p></p><p>
</p><p>of which contain
hydrogen bonding motifs of varying strengths. We show that by influencing the
adsorption and diffusion rates, molecular architecture indeed influences LS
conversion efficiency and subsequent assembly on the substrate. The presence of
strong lateral interactions limits transfer and diffusion, forming vacancies in
the transferred films with smaller domain sizes while weaker intermolecular
interactions enabled high transfer efficiencies.</p><p></p><p><br></p><p></p>
|
7 |
Fabricação e caracterização de células solares baseadas em polímeros orgânicos low-bandgap nanoestruturados / Fabrication and characterization of organic solar cells based on nanostructured low-bandgap polymersSilva, Edilene Assunção da 05 July 2018 (has links)
Submitted by EDILENE ASSUNÇÃO DA SILVA (edileneass@gmail.com) on 2018-10-15T12:58:45Z
No. of bitstreams: 1
Thesis final corrected version_Silva.pdf: 5038032 bytes, checksum: 096e39873786dd29f13d8faedd460bb8 (MD5) / Approved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2018-10-15T17:17:09Z (GMT) No. of bitstreams: 1
silva_ea_dr_bauru.pdf: 5038032 bytes, checksum: 096e39873786dd29f13d8faedd460bb8 (MD5) / Made available in DSpace on 2018-10-15T17:17:09Z (GMT). No. of bitstreams: 1
silva_ea_dr_bauru.pdf: 5038032 bytes, checksum: 096e39873786dd29f13d8faedd460bb8 (MD5)
Previous issue date: 2018-07-05 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Les cellules solaires polymériques attirent un grand intérêt dans ce domaine de recherche, en raison du faible coût, du procédé de fabrication de grandes surfaces, des matériaux de manutention légers et de la possibilité de leur fabrication par diverses techniques. Pour une bonne efficacité des dispositifs photovoltaïques, la couche active doit contenir une bonne absorption de la lumière du soleil. En termes de bandgap,cela signifie que plus le bandgap est petit, plus le flux de photons absorbés est grand. Une manière d'accomplir ceci avec les matériaux polymères est la synthèse d'un copolymère alterné dans lequel le bandgap optique est diminué, ce que l'on appelle des polymères low-bandgap. L'organisation structurelle de la couche active joue un rôle important dans la performance des dispositifs, y compris les dispositifs photovoltaïques, et la technique Langmuir-Schaefer (LS) permet de fabriquer des films nanostructurés avec contrôle de l'épaisseur, qui peuvent servir de base pour construire de meilleurs dispositifs. Dans ce contexte, l'objectif de ce travail était de synthétiser des polymères low-bandgap et ensuite de fabriquer et caractériser des films LS de ces polymères et leurs mélanges avec un dérivé de fullerène, le PCBM, pour leur application en tant que couche active de cellules solaires. Les films LS des polymères et leurs mélanges avec PCBM ont été fabriqués et des mesures de caractérisation ont été effectuées. Ces films ont été caractérisés par des mesures électriques (courant vs tension, spectroscopie d'impédance et voltampérométrie cyclique), morphologiques (microscopie à force atomique) et optiques (UV-visible, diffusion Raman et transmission infrarouge). Par les films de Langmuir et les mesures morphologiques, il a été possible d'observer les caractéristiques spécifiques concernant la conformation de chaque polymère sous forme de film. Des mesures optiques confirment l'absorption aux longueurs d'onde élevées attendues pour ces polymères. Dans les mesures électriques, les résultats ont montré des conductivités différentes pour les mêmes matériaux lorsque les types d'électrodes ont été changés. Les dispositifs photovoltaïques des films LS fabriqués n'ont pas atteint de bonnes valeurs d'efficicacité. Les films spincoating de ces polymères testés en tant que couche active des dispositifs, sous atmosphère contrôlée, ont montré un’efficacité allant jusqu'à 0,6%. / Células solares poliméricas atraem grande interesse nessa área de pesquisa, devido ao baixo custo, processo de fabricação de grandes áreas, materiais de manuseio leves e a possibilidade de sua fabricação por diversas técnicas. Para uma boa eficiência dos dispositivos fotovoltaicos, a camada ativa deve conter uma boa absorção da luz solar. Em termos de bandgap, isto quer dizer que quanto menor o bandgap maior o fluxo de fótons absorvidos. Uma maneira de realizar isto com os materiais poliméricos é a síntese de um polímero no qual o bandgap óptico tem a capacidade de aumentar a captura da luz solar, os chamados polímeros low-bandgap. A organização estrutural da camada ativa possui um papel importante na performance de dispositivos, inclusive dos fotovoltaicos, e a técnica Langmuir-Schaefer (LS) proporciona a capacidade de fabricar filmes nanoestruturados e com controle de espessura, podendo servir de base para construção de melhores dispositivos. Dentro deste contexto, o objetivo deste trabalho foi sintetizar polímeros low-bandgap e, posteriormente fabricar e caracterizar filmes LS destes polímeros e de suas blendas com um derivado de fulereno, o PCBM, para a aplicação dos mesmos como camada ativa de células solares. Foram fabricados filmes LS dos polímeros e de suas misturas com PCBM e realizadas medidas de caracterização. Estes filmes foram caracterizados por meio de medidas elétricas (corrente vs. Tensão, espectroscopia de impedância e voltametria cíclica), morfológica (microscopia de força atômica) e óptica (Ultravioleta-Visível, Espalhamento Raman e transmissão no infravermelho). Com os filmes de Langmuir e as medidas morfológicas foi possível observar as características específicas de como é a conformação de cada polímero na forma de filme. As medidas ópticas confirmam a absorção em altos comprimentos de onda esperados para estes polímeros. Nas medidas elétricas os resultados mostraram diferentes condutividades para os mesmos materiais quando mudado os tipos de eletrodos. Os dispositivos fotovoltaicos dos filmes LS fabricados não alcançaram bons valores de eficiência. Filmes spin-coating destes polímeros testados como camada ativa dos dispositivos, em atmosfera controlada, revelaram eficiência de até 0.6%. / Polymeric solar cells attract great interest in this area of research due to the potential low cost, large area fabrication process, lightweight physical feature and the possibility of fabricating these cells by several techniques. To achieve good efficiency in the photovoltaic devices the active layer must have an efficient absorption of sunlight. In terms of bandgap, this means that the smaller the bandgap the greater the flux of photons absorbed. One way to accomplish this, with the polymeric materials, is the synthesis of a polymer in which the optical bandgap has the ability to increase the capture of sunlight, the so-called low-bandgap polymers. The structural organization of the active layer plays an important role in the performance of devices, including in photovoltaic devices, and the Langmuir-Schaefer (LS) technique provides the ability to manufacture nanostructured films with thickness control, which can serve as a basis for building better devices. In this context, the aim of this work was to synthesize low-bandgap polymers for later manufacturing and characterization of LS films of these polymers and their blends with a fullerene derivative, PCBM, and test them as active layer of solar cells. LS films of such polymers and their blends with PCBM were made and characterization measurements were performed. These films were characterized by electrical (current vs. voltage, impedance spectroscopy and cyclic voltammetry), morphology (atomic force microscopy) and optical (ultraviolet-visible, Raman scattering and infrared) measurements. Through the Langmuir films and the morphological measurements, it was possible to observe the specific characteristics of how it is the conformation of each polymer in film form. Optical measurements confirmed the absorption at high wavelengths expected for these polymers. In the electrical measurements, the results showed different conductivities for the same materials when the types of electrodes were changed. The photovoltaic devices manufactured from LS technique have not reached good efficiency values. When spin-coated active layers were tested as OPV devices in a controlled atmosphere the efficiency achieved up to 0.6% / CAPES DS / CNPq SWE 205489/2014-1
|
8 |
Controlled Transfer Of Macroscopically Organized Nanoscopically Patterned Sub–10 nm Features onto 2D Crystalline and Amorphous MaterialsTyson C Davis (9121889) 05 August 2020 (has links)
<div>Surface level molecules act as an interface that mediates between the surface and the environment. In this way, interfacial molecules are responsible for conferring characteristics of relevance to many modern material science problems, such as electrical conductivity and wettability. For many applications, such as organic photovoltaics and nanoelectronics, macroscopic placement of chemical patterns at the sub-10 nm must be achieved to advance next generation device applications.</div><div><br></div><div>In the work presented here, we show that sub-10 nm orthogonal features can be prepared by translating the building principles of the lipid bilayer into striped phase lipids on 2D materials (e.g. highly ordered pyrolytic graphite (HOPG), MoS2). Macroscopic patterning of these nanoscopic elements is achieved via Langmuir Schafer deposition of polymerizable diyne amphiphiles. On the Langmuir trough, amphiphiles at the air water interface are ordered into features that can be observed on the macroscale using Brewster angle microscopy. Upon contact of the 2D material with the air-water interface the macroscopic pattern on the trough is transferred to the 2D material creating a macroscopic pattern consisting of sub-10 nm orthogonal chemistries. We also show here how hierarchical ordering can be accomplished via noncovalent microcontact printing of amphiphiles onto 2D materials. Microcontact printing allows a greater measure of control over the placement and clustering of interfacial molecules.</div><div><br></div><div>The alkyl chain/surface enthalpy has a great deal of influence over the ordering of amphiphiles at the sub-nm scale. Here, we examine this influence by depositing diyne amphiphiles onto MoS2 which has a weaker alkyl adsorption enthalpy compared to HOPG. We found that dual-chain amphiphiles deposited on MoS2 adopt a geometry that maximized the molecule-molecule interaction compared to the geometry adopted on HOPG.</div><div><br></div><div>Finally, we show how the hierarchical pattern of diyne amphiphiles can be transferred off of the 2D material onto an amorphous material. This is done by reacting the amorphous material with the conjugated backbone of the diyne moiety through a hydrosilylation reaction to exfoliate the film from the 2D crystalline material. The resulting polymer ‘skin’ has many applications were controlling interfacial properties of an amorphous material is important.</div>
|
9 |
Nanopatterning and functionalization of phospholipid-based Langmuir-Blodgett and Langmuir-Schaefer filmsTang, Nathalie Y.-W. 08 1900 (has links)
Durant les dernières décennies, la technique Langmuir-Blodgett (LB) s’est beaucoup développée dans l’approche « bottom-up » pour la création de couches ultra minces nanostructurées. Des patrons constitués de stries parallèles d’environ 100 à 200 nm de largeur ont été générés avec la technique de déposition LB de monocouches mixtes de 1,2-dilauroyl-sn-glycéro-3-phosphatidylcholine (DLPC) et de 1,2-dipalmitoyl-sn-glycéro-3-phosphatidylcholine (DPPC) sur des substrats de silicium et de mica. Afin d’amplifier la fonctionnalité de ces patrons, la 1-palmitoyl-2-(16-(S-methyldithio)hexadécanoyl)-sn-glycéro-3-phosphatidylcholine (DSDPPC) et la 1-lauroyl-2-(12-(S-methyldithio)dodédecanoyl)-sn-glycéro-3-phosphatidylcholine (DSDLPC) ont été employées pour la préparation de monocouches chimiquement hétérogènes. Ces analogues de phospholipide possèdent un groupement fonctionnel méthyldisulfide qui est attaché à la fin de l’une des chaînes alkyles. Une étude exhaustive sur la structure de la phase des monocouches Langmuir, Langmuir-Schaefer (LS) et LB de la DSDPPC et de la DSDLPC et leurs différents mélanges avec la DPPC ou la DLPC est présentée dans cette thèse.
Tout d’abord, un contrôle limité de la périodicité et de la taille des motifs des stries parallèles de DPPC/DLPC a été obtenu en variant la composition lipidique, la pression de surface et la vitesse de déposition. Dans un mélange binaire de fraction molaire plus grande de lipide condensé que de lipide étendu, une vitesse de déposition plus lente et une plus basse pression de surface ont généré des stries plus continues et larges. L’addition d’un tensioactif, le cholestérol, au mélange binaire équimolaire de la DPPC/DLPC a permis la formation de stries parallèles à de plus hautes pressions de surface.
La caractérisation des propriétés physiques des analogues de phospholipides a été nécessaire. La température de transition de phase de la DSDPPC de 44.5 ± 1.5 °C comparativement à 41.5 ± 0.3 °C pour la DPPC. L’isotherme de la DSDPPC est semblable à celui de la DPPC. La monocouche subit une transition de phase liquide-étendue-à-condensée (LE-C) à une pression de surface légèrement supérieure à celle de la DPPC (6 mN m-1 vs. 4 mN m-1) Tout comme la DLPC, la DSDLPC demeure dans la phase LE jusqu’à la rupture de la monocouche. Ces analogues de phospholipide existent dans un état plus étendu tout au long de la compression de la monocouche et montrent des pressions de surface de rupture plus basses que les phospholipides non-modifiés.
La morphologie des domaines de monocouches Langmuir de la DPPC et de la DSDPPC à l’interface eau/air a été comparée par la microscopie à angle de Brewster (BAM). La DPPC forme une monocouche homogène à une pression de surface (π) > 10 mN/m, alors que des domaines en forme de fleurs sont formés dans la monocouche de DSDPPC jusqu’à une π ~ 30 mN m-1.
La caractérisation de monocouches sur substrat solide a permis de démontrer que le patron de stries parallèles préalablement obtenu avec la DPPC/DLPC était reproduit en utilisant des mélanges de la DSDPPC/DLPC ou de la DPPC/DSDLPC donnant ainsi lieu à des patrons chimiquement hétérogènes. En général, pour obtenir le même état de phase que la DPPC, la monocouche de DSDPPC doit être comprimée à de plus hautes pressions de surface.
Le groupement disulfide de ces analogues de phospholipide a été exploité, afin de (i) former des monocouches auto-assemblées sur l’or et de (ii) démontrer la métallisation sélective des terminaisons fonctionnalisées des stries. La spectrométrie de photoélectrons induits par rayons X (XPS) a confirmé que la monocouche modifiée réagit avec la vapeur d’or pour former des thiolates d’or. L’adsorption de l’Au, de l’Ag et du Cu thermiquement évaporé démontre une adsorption préférentielle de la vapeur de métal sur la phase fonctionnalisée de disulfide seulement à des recouvrements sub-monocouche. / In the past two decades, the Langmuir-Blodgett (LB) technique has emerged as a bottom-up route to create nanostructured ultrathin films. Patterns consisting of parallel stripes, ∼100 to 200 nm in width, were generated via the LB deposition of mixed monolayers of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) onto silicon and mica substrates. To expand the functionality of these patterns, 1-palmitoyl-2-(16-(S-methyldithio)hexadecanoyl)-sn-glycero-3-phosphocholine (DSDPPC) and 1-lauroyl-2-(12-(S-methyldithio)dodecanoyl)-sn-glycero-3-phosphocholine (DSDLPC) were used to prepare chemically heterogeneous films. These phospholipid analogues have a methyldisulfide group attached to one of the alkyl chain ends. An extensive study of the phase structure of Langmuir, Langmuir-Shaefer and LB films of DSDPPC and DSDLPC and their mixtures with DPPC or DLPC is presented in this thesis.
Limited control over the regularity and feature size of the DPPC/DLPC stripe pattern was achieved by varying the lipid composition, deposition pressure, and substrate withdrawal speed. A higher percentage of condensed versus fluid lipid, slower deposition speed, and lower surface pressure create more continuous and wider stripes. The addition of a lineactant, cholesterol, to the DPPC/DLPC 1:1 (mol/mol) mixture allowed the formation of parallel stripes at higher surface pressure.
The gel-to-liquid crystalline transition temperature of DSDPPC was determined to be 44.5 ± 1.5 °C versus 41.5 ± 0.3 °C for DPPC by DSC and turbidity measurements. The pressure-area isotherm of DSDPPC is similar to that of DPPC. The monolayer undergoes a liquid expanded-to-condensed (LE-C) phase transition at a surface pressure slightly higher than that of DPPC (6 mN m-1 vs. 4 mN m-1). Like DLPC, DSDLPC remains in the LE phase until the film collapse. The disulfide-modified lipids exist in a more expanded state throughout the monolayer compression and exhibit lower collapse pressures than the unmodified phospholipids.
The domain morphologies of DPPC and DSDPPC at the air/water interface were compared using Brewster Angle Microscopy. DPPC forms a homogeneous monolayer at a surface pressure (π) > 10 mN m-1, while flower-like domains exist in the DSDPPC monolayers until π ∼ 30 mN m-1. Solid-supported DSDPPC films were prepared and characterized using various surface analysis techniques. The parallel stripe pattern previously obtained with mixtures of DPPC/DLPC was reproduced using DSDPPC/DLPC or DPPC/DSDLPC mixtures resulting in chemically-differentiated patterns. The average stripe width varied from 150 to 500 nm, depending on the lipid composition and deposition pressure.
The disulfide group of the analogues was exploited to (i) form self-assembled monolayers of phospholipids on gold and (ii) demonstrate the selective metallization of the disulfide-terminated areas of the stripe patterns. X-ray photoelectron spectroscopy (XPS) confirmed that the monolayer-bound disulfides react with Au vapor to form a gold-thiolate species. Thermally evaporated Au, Ag and Cu exhibit preferential absorption onto the modified lipids only at submonolayer coverages.
|
10 |
Nanopatterning and functionalization of phospholipid-based Langmuir-Blodgett and Langmuir-Schaefer filmsTang, Nathalie Y.-W. 08 1900 (has links)
Durant les dernières décennies, la technique Langmuir-Blodgett (LB) s’est beaucoup développée dans l’approche « bottom-up » pour la création de couches ultra minces nanostructurées. Des patrons constitués de stries parallèles d’environ 100 à 200 nm de largeur ont été générés avec la technique de déposition LB de monocouches mixtes de 1,2-dilauroyl-sn-glycéro-3-phosphatidylcholine (DLPC) et de 1,2-dipalmitoyl-sn-glycéro-3-phosphatidylcholine (DPPC) sur des substrats de silicium et de mica. Afin d’amplifier la fonctionnalité de ces patrons, la 1-palmitoyl-2-(16-(S-methyldithio)hexadécanoyl)-sn-glycéro-3-phosphatidylcholine (DSDPPC) et la 1-lauroyl-2-(12-(S-methyldithio)dodédecanoyl)-sn-glycéro-3-phosphatidylcholine (DSDLPC) ont été employées pour la préparation de monocouches chimiquement hétérogènes. Ces analogues de phospholipide possèdent un groupement fonctionnel méthyldisulfide qui est attaché à la fin de l’une des chaînes alkyles. Une étude exhaustive sur la structure de la phase des monocouches Langmuir, Langmuir-Schaefer (LS) et LB de la DSDPPC et de la DSDLPC et leurs différents mélanges avec la DPPC ou la DLPC est présentée dans cette thèse.
Tout d’abord, un contrôle limité de la périodicité et de la taille des motifs des stries parallèles de DPPC/DLPC a été obtenu en variant la composition lipidique, la pression de surface et la vitesse de déposition. Dans un mélange binaire de fraction molaire plus grande de lipide condensé que de lipide étendu, une vitesse de déposition plus lente et une plus basse pression de surface ont généré des stries plus continues et larges. L’addition d’un tensioactif, le cholestérol, au mélange binaire équimolaire de la DPPC/DLPC a permis la formation de stries parallèles à de plus hautes pressions de surface.
La caractérisation des propriétés physiques des analogues de phospholipides a été nécessaire. La température de transition de phase de la DSDPPC de 44.5 ± 1.5 °C comparativement à 41.5 ± 0.3 °C pour la DPPC. L’isotherme de la DSDPPC est semblable à celui de la DPPC. La monocouche subit une transition de phase liquide-étendue-à-condensée (LE-C) à une pression de surface légèrement supérieure à celle de la DPPC (6 mN m-1 vs. 4 mN m-1) Tout comme la DLPC, la DSDLPC demeure dans la phase LE jusqu’à la rupture de la monocouche. Ces analogues de phospholipide existent dans un état plus étendu tout au long de la compression de la monocouche et montrent des pressions de surface de rupture plus basses que les phospholipides non-modifiés.
La morphologie des domaines de monocouches Langmuir de la DPPC et de la DSDPPC à l’interface eau/air a été comparée par la microscopie à angle de Brewster (BAM). La DPPC forme une monocouche homogène à une pression de surface (π) > 10 mN/m, alors que des domaines en forme de fleurs sont formés dans la monocouche de DSDPPC jusqu’à une π ~ 30 mN m-1.
La caractérisation de monocouches sur substrat solide a permis de démontrer que le patron de stries parallèles préalablement obtenu avec la DPPC/DLPC était reproduit en utilisant des mélanges de la DSDPPC/DLPC ou de la DPPC/DSDLPC donnant ainsi lieu à des patrons chimiquement hétérogènes. En général, pour obtenir le même état de phase que la DPPC, la monocouche de DSDPPC doit être comprimée à de plus hautes pressions de surface.
Le groupement disulfide de ces analogues de phospholipide a été exploité, afin de (i) former des monocouches auto-assemblées sur l’or et de (ii) démontrer la métallisation sélective des terminaisons fonctionnalisées des stries. La spectrométrie de photoélectrons induits par rayons X (XPS) a confirmé que la monocouche modifiée réagit avec la vapeur d’or pour former des thiolates d’or. L’adsorption de l’Au, de l’Ag et du Cu thermiquement évaporé démontre une adsorption préférentielle de la vapeur de métal sur la phase fonctionnalisée de disulfide seulement à des recouvrements sub-monocouche. / In the past two decades, the Langmuir-Blodgett (LB) technique has emerged as a bottom-up route to create nanostructured ultrathin films. Patterns consisting of parallel stripes, ∼100 to 200 nm in width, were generated via the LB deposition of mixed monolayers of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) onto silicon and mica substrates. To expand the functionality of these patterns, 1-palmitoyl-2-(16-(S-methyldithio)hexadecanoyl)-sn-glycero-3-phosphocholine (DSDPPC) and 1-lauroyl-2-(12-(S-methyldithio)dodecanoyl)-sn-glycero-3-phosphocholine (DSDLPC) were used to prepare chemically heterogeneous films. These phospholipid analogues have a methyldisulfide group attached to one of the alkyl chain ends. An extensive study of the phase structure of Langmuir, Langmuir-Shaefer and LB films of DSDPPC and DSDLPC and their mixtures with DPPC or DLPC is presented in this thesis.
Limited control over the regularity and feature size of the DPPC/DLPC stripe pattern was achieved by varying the lipid composition, deposition pressure, and substrate withdrawal speed. A higher percentage of condensed versus fluid lipid, slower deposition speed, and lower surface pressure create more continuous and wider stripes. The addition of a lineactant, cholesterol, to the DPPC/DLPC 1:1 (mol/mol) mixture allowed the formation of parallel stripes at higher surface pressure.
The gel-to-liquid crystalline transition temperature of DSDPPC was determined to be 44.5 ± 1.5 °C versus 41.5 ± 0.3 °C for DPPC by DSC and turbidity measurements. The pressure-area isotherm of DSDPPC is similar to that of DPPC. The monolayer undergoes a liquid expanded-to-condensed (LE-C) phase transition at a surface pressure slightly higher than that of DPPC (6 mN m-1 vs. 4 mN m-1). Like DLPC, DSDLPC remains in the LE phase until the film collapse. The disulfide-modified lipids exist in a more expanded state throughout the monolayer compression and exhibit lower collapse pressures than the unmodified phospholipids.
The domain morphologies of DPPC and DSDPPC at the air/water interface were compared using Brewster Angle Microscopy. DPPC forms a homogeneous monolayer at a surface pressure (π) > 10 mN m-1, while flower-like domains exist in the DSDPPC monolayers until π ∼ 30 mN m-1. Solid-supported DSDPPC films were prepared and characterized using various surface analysis techniques. The parallel stripe pattern previously obtained with mixtures of DPPC/DLPC was reproduced using DSDPPC/DLPC or DPPC/DSDLPC mixtures resulting in chemically-differentiated patterns. The average stripe width varied from 150 to 500 nm, depending on the lipid composition and deposition pressure.
The disulfide group of the analogues was exploited to (i) form self-assembled monolayers of phospholipids on gold and (ii) demonstrate the selective metallization of the disulfide-terminated areas of the stripe patterns. X-ray photoelectron spectroscopy (XPS) confirmed that the monolayer-bound disulfides react with Au vapor to form a gold-thiolate species. Thermally evaporated Au, Ag and Cu exhibit preferential absorption onto the modified lipids only at submonolayer coverages.
|
Page generated in 0.09 seconds