Spelling suggestions: "subject:"lowbandgap polymers"" "subject:"ofbandgap polymers""
1 |
Fabricação e caracterização de dispositivos fotovoltaicos utilizando filmes Langmuir-blodgett de polímeros com baixo valor de bandgap / Production and characterization of photovoltaic devices using Langmuir-blodgett films of low bandgap value polymersOliveira, Vinicius Jessé Rodrigues de 16 February 2018 (has links)
Submitted by Vinicíus Jessé Rodrigues de Oliveira null (vinijro@gmail.com) on 2018-03-20T20:23:10Z
No. of bitstreams: 1
DISSERTAÇÃO FINAL JESSE 2018.pdf: 6372777 bytes, checksum: 1bb0391cd590635dcecd1727ee43665e (MD5) / Approved for entry into archive by Maria Marlene Zaniboni null (zaniboni@bauru.unesp.br) on 2018-03-21T17:01:53Z (GMT) No. of bitstreams: 1
oliveira_vjr_me_bauru.pdf: 6372777 bytes, checksum: 1bb0391cd590635dcecd1727ee43665e (MD5) / Made available in DSpace on 2018-03-21T17:01:53Z (GMT). No. of bitstreams: 1
oliveira_vjr_me_bauru.pdf: 6372777 bytes, checksum: 1bb0391cd590635dcecd1727ee43665e (MD5)
Previous issue date: 2018-02-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Os polímeros conjugados aplicados como camada ativa, em dispositivos optoeletrônicos têm alto potencial tecnológico e tem sido amplamente estudados nas últimas décadas. Estes materiais podem ser processados na forma de filmes finos e dependendo da técnica utilizada pode-se obter filmes organizados e altamente reprodutíveis. Uma das técnicas de deposição que pode proporcionar estas propriedades é a de Langmuir Blodgett (LB) e Langmuir Schaefer (LS). Este trabalho de mestrado teve como objetivo fabricar e caracterizar materiais/filmes com capacidade para aplicação em dispositivos fotovoltaicos Os materiais caracterizados, com este objetivo, foram polímeros de baixo valor de band gap:poli[(4,4-bis(2-etilhexil)-ciclopenta-[2,1-b:3,4-b’]ditiofeno)2,6-diil-alt-(2,1,3-benzotiadiazol)-4,7-diil], PCPDTBT e poli[(4,4’-dioctilditieno[3,2-b:2’,3’d]silol-2,6-diil)-alt-(2,1,3-benzotiadiazol)-4,7-diil)], PDTSBT. Para a fabricação dos filmes ultrafinos foi realizado um estudo de isotermas de pressão superficial por área do monómero (π-A) em uma cuba de Langmuir. As técnicas de LB e LS permitiram o processamento molecular dos materiais através das informações obtidas das isotermas (π-A). As caracterizações ópticas (UV-Vis) foram realizadas para análise de crescimento e da organização das camadas dos filmes finos. Para as medidas elétricas foi utilizado uma fonte de corrente continua para se obter a condutividade e fotocondutividade elétrica dos filmes depositados por LB e LS sobre eletrodos interdigitados. Os filmes fabricados foram utilizados como camadas ativas dos dispositivos fotovoltaicos em uma heterojunção planar, com estrutura basicamente formada por ITO/Polímero/PCBM/Alumínio. Foram realizadas medidas de densidade de corrente versus tensão (J vs V) sob iluminação de um Simulador Solar para o cálculo de eficiência da célula. / The conjugated polymers applied as active layer in optoelectronic devices, have high technological potential and have been widely studied in recent decades. These materials can be processed in the form of thin films, and depending on the technique used one can obtain organized and highly reproducible films. One of the deposition techniques that can provide these properties is Langmuir Blodgett (LB) and Langmuir Schaefer (LS). This master 's work was designed to manufacture and characterize materials / films with potential for application in photovoltaic devices. The materials characterized for this purpose, were low bandgap value polymers: poly [(4,4-bis (2-ethylhexyl) cyclopenta- [2,1-b: 3,4-b '] dithiophene) 2,6-diyl-al- (2,1,3-benzothiadiazole) - 4,7-diyl] PCPDTBT and poly [(4,4'-dioctyldithieno [3,2-b: 2 ', 3'd] silol-2,6-diyl) -alt- (2,1,3-benzothiadiazol) -4,7- ] PDTSBT. For the production of ultrafine films, a study of surface pressure isotherms by area of the monomer (π-A) in a Langmuir trough was performed. The LB and LS techniques allowed the molecular processing of the materials through the information obtained from the isotherms (π-A). The optical characterizations (UV-Vis) were performed for analysis of the growth and organization of thin film layers. For the electrical measurements, a DC current source was used to obtain the electrical conductivity and photoconductivity of the films deposited by LB and LS on interdigitated electrodes. The films manufactured were used as active layers of the photovoltaic devices in a planar heterojunction, with structure basically formed by ITO / Polymer / PCBM / Aluminum. Measurements of current versus voltage density (J vs V) were performed under illumination of a Solar Simulator to calculate cell efficiency. / 1578726
|
2 |
Tidsberoende kvantkemiska beräkningar av optisk absorption hos polymerer och molekyler med litet bandgap / Calculations of optical absorption in low-bandgap polymers and molecules using time-dependent quantum chemical methodsSödergren, Helena January 2004 (has links)
<p>The vertical electronic excitation energies for the narrow-bandgap polymers LBPF, EP37 and EP62 have been calculated using Density Functional Theory (DFT). Also the vertical excitation energies for the acceptor unit of LBPF have been calculated using the Hartree-Fock (HF), DFT and Coupled Cluster (CC) methods. The calculations cover the visible and infrared wave length region and two strong transitions are obtained, one corresponding to the pi to pi* transition and one corresponding to the pi to Acceptor transition. The excitation energies obtained from DFT are below the corresponding experimental results and attempts have therefore been made to perform bench-marking calculations using a hierarchy of CC methods.</p>
|
3 |
Theoretical studies of optical absorption in low-bandgap polymers / Teoretiska studier av optisk absorption i polymerer med låga bandgapKarlsson, Daniel January 2005 (has links)
<p>The absorption spectra of a recently designed low-bandgap conjugated polymer has been studied using the semi-empirical method ZINDO and TDDFT/B3LYP/6-31G. The vertical excitation energies have been calculated for monomer up to hexamer. Two main absorption peaks can be seen, the one largest in wavelength corresponding to a HOMO to LUMO transition, and one involving higher order excitations. TDDFT results are red-shifted compared to the ZINDO results. Comparison with experiment yields that short conjugation lengths are dominating. This is possibly due to steric interactions between polymer chains, breaking the conjugation length. Such effects are also studied.</p>
|
4 |
Tidsberoende kvantkemiska beräkningar av optisk absorption hos polymerer och molekyler med litet bandgap / Calculations of optical absorption in low-bandgap polymers and molecules using time-dependent quantum chemical methodsSödergren, Helena January 2004 (has links)
The vertical electronic excitation energies for the narrow-bandgap polymers LBPF, EP37 and EP62 have been calculated using Density Functional Theory (DFT). Also the vertical excitation energies for the acceptor unit of LBPF have been calculated using the Hartree-Fock (HF), DFT and Coupled Cluster (CC) methods. The calculations cover the visible and infrared wave length region and two strong transitions are obtained, one corresponding to the pi to pi* transition and one corresponding to the pi to Acceptor transition. The excitation energies obtained from DFT are below the corresponding experimental results and attempts have therefore been made to perform bench-marking calculations using a hierarchy of CC methods.
|
5 |
Theoretical studies of optical absorption in low-bandgap polymers / Teoretiska studier av optisk absorption i polymerer med låga bandgapKarlsson, Daniel January 2005 (has links)
The absorption spectra of a recently designed low-bandgap conjugated polymer has been studied using the semi-empirical method ZINDO and TDDFT/B3LYP/6-31G. The vertical excitation energies have been calculated for monomer up to hexamer. Two main absorption peaks can be seen, the one largest in wavelength corresponding to a HOMO to LUMO transition, and one involving higher order excitations. TDDFT results are red-shifted compared to the ZINDO results. Comparison with experiment yields that short conjugation lengths are dominating. This is possibly due to steric interactions between polymer chains, breaking the conjugation length. Such effects are also studied.
|
6 |
Fabricação e caracterização de células solares baseadas em polímeros orgânicos low-bandgap nanoestruturados / Fabrication and characterization of organic solar cells based on nanostructured low-bandgap polymersSilva, Edilene Assunção da 05 July 2018 (has links)
Submitted by EDILENE ASSUNÇÃO DA SILVA (edileneass@gmail.com) on 2018-10-15T12:58:45Z
No. of bitstreams: 1
Thesis final corrected version_Silva.pdf: 5038032 bytes, checksum: 096e39873786dd29f13d8faedd460bb8 (MD5) / Approved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2018-10-15T17:17:09Z (GMT) No. of bitstreams: 1
silva_ea_dr_bauru.pdf: 5038032 bytes, checksum: 096e39873786dd29f13d8faedd460bb8 (MD5) / Made available in DSpace on 2018-10-15T17:17:09Z (GMT). No. of bitstreams: 1
silva_ea_dr_bauru.pdf: 5038032 bytes, checksum: 096e39873786dd29f13d8faedd460bb8 (MD5)
Previous issue date: 2018-07-05 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Les cellules solaires polymériques attirent un grand intérêt dans ce domaine de recherche, en raison du faible coût, du procédé de fabrication de grandes surfaces, des matériaux de manutention légers et de la possibilité de leur fabrication par diverses techniques. Pour une bonne efficacité des dispositifs photovoltaïques, la couche active doit contenir une bonne absorption de la lumière du soleil. En termes de bandgap,cela signifie que plus le bandgap est petit, plus le flux de photons absorbés est grand. Une manière d'accomplir ceci avec les matériaux polymères est la synthèse d'un copolymère alterné dans lequel le bandgap optique est diminué, ce que l'on appelle des polymères low-bandgap. L'organisation structurelle de la couche active joue un rôle important dans la performance des dispositifs, y compris les dispositifs photovoltaïques, et la technique Langmuir-Schaefer (LS) permet de fabriquer des films nanostructurés avec contrôle de l'épaisseur, qui peuvent servir de base pour construire de meilleurs dispositifs. Dans ce contexte, l'objectif de ce travail était de synthétiser des polymères low-bandgap et ensuite de fabriquer et caractériser des films LS de ces polymères et leurs mélanges avec un dérivé de fullerène, le PCBM, pour leur application en tant que couche active de cellules solaires. Les films LS des polymères et leurs mélanges avec PCBM ont été fabriqués et des mesures de caractérisation ont été effectuées. Ces films ont été caractérisés par des mesures électriques (courant vs tension, spectroscopie d'impédance et voltampérométrie cyclique), morphologiques (microscopie à force atomique) et optiques (UV-visible, diffusion Raman et transmission infrarouge). Par les films de Langmuir et les mesures morphologiques, il a été possible d'observer les caractéristiques spécifiques concernant la conformation de chaque polymère sous forme de film. Des mesures optiques confirment l'absorption aux longueurs d'onde élevées attendues pour ces polymères. Dans les mesures électriques, les résultats ont montré des conductivités différentes pour les mêmes matériaux lorsque les types d'électrodes ont été changés. Les dispositifs photovoltaïques des films LS fabriqués n'ont pas atteint de bonnes valeurs d'efficicacité. Les films spincoating de ces polymères testés en tant que couche active des dispositifs, sous atmosphère contrôlée, ont montré un’efficacité allant jusqu'à 0,6%. / Células solares poliméricas atraem grande interesse nessa área de pesquisa, devido ao baixo custo, processo de fabricação de grandes áreas, materiais de manuseio leves e a possibilidade de sua fabricação por diversas técnicas. Para uma boa eficiência dos dispositivos fotovoltaicos, a camada ativa deve conter uma boa absorção da luz solar. Em termos de bandgap, isto quer dizer que quanto menor o bandgap maior o fluxo de fótons absorvidos. Uma maneira de realizar isto com os materiais poliméricos é a síntese de um polímero no qual o bandgap óptico tem a capacidade de aumentar a captura da luz solar, os chamados polímeros low-bandgap. A organização estrutural da camada ativa possui um papel importante na performance de dispositivos, inclusive dos fotovoltaicos, e a técnica Langmuir-Schaefer (LS) proporciona a capacidade de fabricar filmes nanoestruturados e com controle de espessura, podendo servir de base para construção de melhores dispositivos. Dentro deste contexto, o objetivo deste trabalho foi sintetizar polímeros low-bandgap e, posteriormente fabricar e caracterizar filmes LS destes polímeros e de suas blendas com um derivado de fulereno, o PCBM, para a aplicação dos mesmos como camada ativa de células solares. Foram fabricados filmes LS dos polímeros e de suas misturas com PCBM e realizadas medidas de caracterização. Estes filmes foram caracterizados por meio de medidas elétricas (corrente vs. Tensão, espectroscopia de impedância e voltametria cíclica), morfológica (microscopia de força atômica) e óptica (Ultravioleta-Visível, Espalhamento Raman e transmissão no infravermelho). Com os filmes de Langmuir e as medidas morfológicas foi possível observar as características específicas de como é a conformação de cada polímero na forma de filme. As medidas ópticas confirmam a absorção em altos comprimentos de onda esperados para estes polímeros. Nas medidas elétricas os resultados mostraram diferentes condutividades para os mesmos materiais quando mudado os tipos de eletrodos. Os dispositivos fotovoltaicos dos filmes LS fabricados não alcançaram bons valores de eficiência. Filmes spin-coating destes polímeros testados como camada ativa dos dispositivos, em atmosfera controlada, revelaram eficiência de até 0.6%. / Polymeric solar cells attract great interest in this area of research due to the potential low cost, large area fabrication process, lightweight physical feature and the possibility of fabricating these cells by several techniques. To achieve good efficiency in the photovoltaic devices the active layer must have an efficient absorption of sunlight. In terms of bandgap, this means that the smaller the bandgap the greater the flux of photons absorbed. One way to accomplish this, with the polymeric materials, is the synthesis of a polymer in which the optical bandgap has the ability to increase the capture of sunlight, the so-called low-bandgap polymers. The structural organization of the active layer plays an important role in the performance of devices, including in photovoltaic devices, and the Langmuir-Schaefer (LS) technique provides the ability to manufacture nanostructured films with thickness control, which can serve as a basis for building better devices. In this context, the aim of this work was to synthesize low-bandgap polymers for later manufacturing and characterization of LS films of these polymers and their blends with a fullerene derivative, PCBM, and test them as active layer of solar cells. LS films of such polymers and their blends with PCBM were made and characterization measurements were performed. These films were characterized by electrical (current vs. voltage, impedance spectroscopy and cyclic voltammetry), morphology (atomic force microscopy) and optical (ultraviolet-visible, Raman scattering and infrared) measurements. Through the Langmuir films and the morphological measurements, it was possible to observe the specific characteristics of how it is the conformation of each polymer in film form. Optical measurements confirmed the absorption at high wavelengths expected for these polymers. In the electrical measurements, the results showed different conductivities for the same materials when the types of electrodes were changed. The photovoltaic devices manufactured from LS technique have not reached good efficiency values. When spin-coated active layers were tested as OPV devices in a controlled atmosphere the efficiency achieved up to 0.6% / CAPES DS / CNPq SWE 205489/2014-1
|
7 |
Fabrication et caractérisation de cellules solaires à base de polymères organiques low-bandgap nanostructurés / Fabrication and characterization of organic solar cells based on nanostructured low-bandgap polymers / Fabricação e caracterização de células solares baseadas em polímeros orgânicos low-bandgap nanoestruturadosAssunção da Silva, Edilene 05 July 2018 (has links)
Les cellules solaires polymériques attirent un grand intérêt dans ce domaine de recherche, en raison du faible coût, du procédé de fabrication de grandes surfaces, des matériaux de manutention légers et de la possibilité de leur fabrication par diverses techniques. Pour une bonne efficacité des dispositifs photovoltaïques, la couche active doit contenir une bonne absorption de la lumière du soleil. En termes de bandgap,cela signifie que plus le bandgap est petit, plus le flux de photons absorbés est grand. Une manière d'accomplir ceci avec les matériaux polymères est la synthèse d'un copolymère alterné dans lequel le bandgap optique est diminué, ce que l'on appelle des polymères low-bandgap. L'organisation joue un rôle important dans la performance des dispositifs, y compris les dispositifs photovoltaïques, et la technique Langmuir-Schaefer (LS) permet de fabriquer des films nanostructurés avec contrôle de l'épaisseur, qui peuvent servir de base pour construire de meilleurs dispositifs. Dans ce contexte, l'objectif de ce travail était de synthétiser des polymères low-bandgap et ensuite de fabriquer et caractériser des films LS de ces polymères et leurs mélanges avec un dérivé de fullerène, le PCBM, pour leur application en tant que couche active de cellules solaires. Les films LS des polymères et leurs mélanges avec PCBM ont été fabriqués et des mesures de caractérisation ont été effectuées. Ces films ont été caractérisés par des mesures électriques (courant vs tension, spectroscopie d'impédance et voltampérométrie cyclique), morphologiques (microscopie à force atomique) et optiques (UV-visible, diffusion Raman et transmission infrarouge). Par les films de Langmuir et les mesures morphologiques, il a été possible d'observer les caractéristiques spécifiques concernant la conformation de chaque polymère sous forme de film. Des mesures optiques confirment l'absorption aux longueurs d'onde élevées attendues pour ces polymères. Dans les mesures électriques, les résultats ont montré des conductivités différentes pour les mêmes matériaux lorsque les types d'électrodes ont été changés. Les dispositifs photovoltaïques des films LS fabriqués n'ont pas atteint de bonnes valeurs d'efficacité. Les films spin-coating de ces polymères testés en tant que couche active des dispositifs, sous atmosphère contrôlée, ont montré unefficacité allant jusqu'à 0,6%. / Polymeric solar cells attract great interest in this area of research due to the potential low cost, large area fabrication process, light weight physical feature and the possibility of fabricating these cells by several techniques. To achieve good efficiency in the photovoltaic devices the active layer must have an efficient absorption of sunlight. In terms of bandgap, this means that the smaller the bandgap the greater the flux of photons absorbed. One way to accomplish this, with the polymeric materials, is the synthesis of a polymer in which the optical bandgap has the ability to increase the capture of sunlight, the so-called low-bandgap polymers. The organization plays an important role in the performance of devices, including in photovoltaic devices, and the Langmuir-Schaefer (LS) technique provides the ability to manufacture nanostructured films with thickness control, which can serve as a basis for building better devices. In this context, the aim of this work was to synthesize low-bandgap polymers for later manufacturing and characterization of LS films of these polymers and their blends with a fullerene derivative, PCBM, and test them as active layer of solar cells. LS films of such polymers and their blends with PCBM were made and characterization measurements were performed. These films were characterized by electrical (current vs. voltage, impedance spectroscopy and cyclic voltammetry), morphology (atomic force microscopy) and optical (ultraviolet-visible, Raman scattering and infrared) measurements. Through the Langmuir films and the morphological measurements, it was possible to observe the specific characteristics of how it is the conformation of each polymer in film form. Optical measurements confirmed the absorption at high wavelengths expected for these polymers. In the electrical measurements the results showed different conductivities for the same materials when the types of electrodes were changed. The photovoltaic devices manufactured from LS technique have not reached good efficiency values. When spin-coated active layers were teste as OPV devices in a controlled atmosphere the efficiency achieved up to 0.6%. / Células solares poliméricas atraem grande interesse nessa área de pesquisa, devido ao baixo custo, processo de fabricação de grandes áreas, materiais de manuseio leves e a possibilidade de sua fabricação por diversas técnicas. Para uma boa eficiência dos dispositivos fotovoltaicos, a camada ativa deve conter uma boa absorção da luz solar. Em termos de bandgap, isto quer dizer que quanto menor o bandgap maior o fluxo de fótons absorvidos. Uma maneira de realizar isto com os materiais poliméricos é a síntese de um polímero no qual o bandgap óptico tem a capacidade de aumentar a captura da luz solar, os chamados polímeros low-bandgap. A organização possui um papel importante na performance de dispositivos, inclusive dos fotovoltaicos, e a técnica Langmuir-Schaefer (LS) proporciona a capacidade de fabricar filmes nanoestruturados e com controle de espessura, podendoservir de base para construção de melhores dispositivos. Dentro deste contexto, o objetivo deste trabalho foi sintetizar polímeros low-bandgap e, posteriormente fabricar e caracterizar filmes LS destes polímeros e de suas blendas com um derivado de fulereno, o PCBM, para a aplicação dos mesmos como camada ativa de células solares. Foram fabricados filmes LS dos polímeros e de suas misturas com PCBM e realizadas medidas de caracterização. Estes filmes foram caracterizados por meio de medidas elétricas (corrente vs. Tensão, espectroscopia de impedância e voltametria cíclica), morfológica (microscopia de força atômica) e óptica (Ultravioleta-Visível, Espalhamento Raman e transmissão no infravermelho). Com os filmes de Langmuir e as medidas morfológicas foi possível observar as características específicas de como é a conformação de cada polímero na forma de filme. As medidas ópticas confirmam a absorção em altos comprimentos de onda esperados para estes polímeros. Nas medidas elétricas os resultados mostraram diferentes condutividades para os mesmos materiais quando mudado os tipos de eletrodos. Os dispositivos fotovoltaicos dos filmes LS fabricados não alcançaram bons valores de eficiência. Filmes spin-coating destes polímeros testados como camada ativa dos dispositivos, em atmosfera controlada, revelaram eficiência de até 0.6%.
|
Page generated in 0.051 seconds