Spelling suggestions: "subject:"distribuição gaussian inversa"" "subject:"istribuição gaussian inversa""
1 |
Refinamento de Inferências nas Distribuições Gaussiana Inversa Triparamétrica, Pareto Generalizada e LomaxPIRES, Juliana Freitas 02 1900 (has links)
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-12T18:30:37Z
No. of bitstreams: 2
TESE Juliana Freitas Pires.pdf: 2036830 bytes, checksum: 9cf767526859054ed6878742b0a6047f (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T18:30:37Z (GMT). No. of bitstreams: 2
TESE Juliana Freitas Pires.pdf: 2036830 bytes, checksum: 9cf767526859054ed6878742b0a6047f (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2014-02 / Nesta tese, tratamos de refinamentos de inferências para as distribuições gaussiana
inversa triparamétrica, Pareto generalizada e Lomax. Duas linhas de pesquisa são abordadas.
A primeira, referente ao Capítulo 2, trata da derivação de expressões analíticas
para os vieses dos estimadores de máxima verossimilhança dos parâmetros da distribuição
gaussiana inversa triparamétrica, possibilitando a obtenção de estimadores corrigidos,
que, em princípio, são mais precisos que os não corrigidos. Estimadores com vieses corrigidos
por bootstrap são também considerados. Adicionalmente, apresentamos diferentes
tipos de intervalos de confiança. A segunda linha de pesquisa, referente aos Capítulos 3
e 4, aborda a derivação de ajustes para a função de verossimilhança perfilada das distribuições
Pareto generalizada e Lomax, respectivamente, com o objetivo de melhorar a
qualidade das inferências (estimadores de máxima verossimilhança e testes de hipóteses)
acerca do parâmetro de forma dessas distribuições, considerando os demais parâmetros
como parâmetros de perturbação. Adicionalmente, consideramos o teste da razão de verossimilhanças
bootstrap. Os desempenhos dos estimadores e testes de hipóteses baseados
nos refinamentos propostos foram avaliados numericamente e comparados às suas contrapartidas
usuais através de estudos de simulação de Monte Carlo. Por fim, a utilidade dos
refinamentos foi ilustrada através de aplicações a conjuntos de dados reais.
|
2 |
Degradation modeling for reliability analysis with time-dependent structure based on the inverse gaussian distribution / Modelagem de degradação para análise de confiabilidade com estrutura dependente do tempo baseada na distribuição gaussiana inversaMorita, Lia Hanna Martins 07 April 2017 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-08-29T19:13:47Z
No. of bitstreams: 1
TeseLHMM.pdf: 2605456 bytes, checksum: b07c268a8fc9a1af8f14ac26deeec97e (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-09-25T18:22:48Z (GMT) No. of bitstreams: 1
TeseLHMM.pdf: 2605456 bytes, checksum: b07c268a8fc9a1af8f14ac26deeec97e (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-09-25T18:22:55Z (GMT) No. of bitstreams: 1
TeseLHMM.pdf: 2605456 bytes, checksum: b07c268a8fc9a1af8f14ac26deeec97e (MD5) / Made available in DSpace on 2017-09-25T18:27:54Z (GMT). No. of bitstreams: 1
TeseLHMM.pdf: 2605456 bytes, checksum: b07c268a8fc9a1af8f14ac26deeec97e (MD5)
Previous issue date: 2017-04-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Conventional reliability analysis techniques are focused on the occurrence of failures over
time. However, in certain situations where the occurrence of failures is tiny or almost null, the
estimation of the quantities that describe the failure process is compromised. In this context the
degradation models were developed, which have as experimental data not the failure, but some
quality characteristic attached to it. Degradation analysis can provide information about the
components lifetime distribution without actually observing failures. In this thesis we proposed
different methodologies for degradation data based on the inverse Gaussian distribution.
Initially, we introduced the inverse Gaussian deterioration rate model for degradation data and
a study of its asymptotic properties with simulated data. We then proposed an inverse Gaussian
process model with frailty as a feasible tool to explore the influence of unobserved covariates,
and a comparative study with the traditional inverse Gaussian process based on simulated data
was made. We also presented a mixture inverse Gaussian process model in burn-in tests,
whose main interest is to determine the burn-in time and the optimal cutoff point that screen
out the weak units from the normal ones in a production row, and a misspecification study was
carried out with the Wiener and gamma processes. Finally, we considered a more flexible
model with a set of cutoff points, wherein the misclassification probabilities are obtained by
the exact method with the bivariate inverse Gaussian distribution or an approximate method
based on copula theory. The application of the methodology was based on three real datasets in
the literature: the degradation of LASER components, locomotive wheels and cracks in metals. / As técnicas convencionais de análise de confiabilidade são voltadas para a ocorrência de falhas
ao longo do tempo. Contudo, em determinadas situações nas quais a ocorrência de falhas é
pequena ou quase nula, a estimação das quantidades que descrevem os tempos de falha fica
comprometida. Neste contexto foram desenvolvidos os modelos de degradação, que possuem
como dado experimental não a falha, mas sim alguma característica mensurável a ela atrelada.
A análise de degradação pode fornecer informações sobre a distribuição de vida dos
componentes sem realmente observar falhas. Assim, nesta tese nós propusemos diferentes
metodologias para dados de degradação baseados na distribuição gaussiana inversa.
Inicialmente, nós introduzimos o modelo de taxa de deterioração gaussiana inversa para dados
de degradação e um estudo de suas propriedades assintóticas com dados simulados. Em
seguida, nós apresentamos um modelo de processo gaussiano inverso com fragilidade
considerando que a fragilidade é uma boa ferramenta para explorar a influência de covariáveis
não observadas, e um estudo comparativo com o processo gaussiano inverso usual baseado em
dados simulados foi realizado. Também mostramos um modelo de mistura de processos
gaussianos inversos em testes de burn-in, onde o principal interesse é determinar o tempo de
burn-in e o ponto de corte ótimo para separar os itens bons dos itens ruins em uma linha de
produção, e foi realizado um estudo de má especificação com os processos de Wiener e
gamma. Por fim, nós consideramos um modelo mais flexível com um conjunto de pontos de
corte, em que as probabilidades de má classificação são estimadas através do método exato
com distribuição gaussiana inversa bivariada ou em um método aproximado baseado na teoria
de cópulas. A aplicação da metodologia foi realizada com três conjuntos de dados reais de
degradação de componentes de LASER, rodas de locomotivas e trincas em metais.
|
3 |
Uma extensão da distribuição Birnbaum-Saunders baseada na distribuição gaussiana inversa / An extension of the Birnbaum-Saunders distribution based on the inverse gaussian distributionRamos Quispe, Luz Marina, 1985- 27 August 2018 (has links)
Orientador: Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T16:25:27Z (GMT). No. of bitstreams: 1
RamosQuispe_LuzMarina_M.pdf: 6411257 bytes, checksum: 6e1e798cf8f6d7586fe5d9a057492a77 (MD5)
Previous issue date: 2015 / Resumo: Vários trabalhos têm sido feitos sobre a distribuição Birnbaum-Saunders (BS) univariada e suas extensões. A distribuição bivariada Birnbaum-Saunders (BS) foi apresentada apenas recentemente por Kundu et al. (2010) e algumas extensões já foram discutidas por Vilca et al. (2014) e Kundu et al. (2013). Eles propuseram uma distribuição BS bivariada com estrutura de dependência e estabeleceram várias propriedades atraentes. Este trabalho fornece extensões, univariada e bivariada, da distribuição BS. Estas extensões são baseadas na distribuição Gaussiana Inversa (IG) que é usada como uma distribuição de mistura no contexto de misturas de escala normal. As distribuições resultantes são distribuições absolutamente contínuas e muitas propriedades da distribuição BS são preservadas. Sob caso bivariado, as marginais e condicionais são do tipo Birnbaum-Saunders univariada. Para a obtenção da estimativa de máxima verossimilhança (EMV) é desenvolvido um algoritmo EM. Ilustramos os resultados obtidos com dados reais e simulados / Abstract: Several works have been done on the univariate Birnbaum-Saunders (BS) distribution and its extensions. The bivariate Birnbaum-Saunders (BS) distribution was presented only recently by Kundu et al. (2010) and some extensions have already been discussed by Vilca et al. (2014) and Kundu et al. (2013). They proposed a bivariate BS distribution with dependence structure and established several attractive properties. This work provides extensions, univariate and bivariate, of the BS distribution. These extensions are based on the Inverse Gaussian (IG) distribution that is used as a mixing distribution in the context of scale mixtures of normal. The resulting distributions are absolutely continuous distributions and many properties of the BS distribution are preserved. Under bivariate case, the marginals and conditionals are of type univariate Birnbaum-Saunders. For obtaining the maximum likelihood estimates (MLE) of the model parameters is developed an algorithm EM. We illustrate the obtained results with real and simulated dataset / Mestrado / Estatistica / Mestra em Estatística
|
Page generated in 0.0854 seconds