Spelling suggestions: "subject:"distribuição normal"" "subject:"istribuição normal""
11 |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potência / Linear mixed regression models under the power-normal class distributionsRoger Jesus Tovar Falon 27 November 2017 (has links)
Neste trabalho são apresentadas algumas extensões dos modelos potência-alfa assumindo o contexto em que as observações estão censuradas ou limitadas. Inicialmente propomos um novo modelo assimétrico que estende os modelos t-assimétrico (Azzalini e Capitanio, 2003) e t-potência (Zhao e Kim, 2016) e inclui a distribuição t de Student como caso particular. Este novo modelo é capaz de ajustar dados com alto grau de assimetria e curtose, ainda maior do que os modelos t-assimétrico e t-potência. Em seguida estendemos o modelo t-potência às situações em que os dados apresentam censura, com alto grau de assimetria e caudas pesadas. Este modelo generaliza o modelo de regressão linear t de Student para dados censurados por Arellano-Valle et al. (2012). O trabalho também introduz o modelo linear misto normal-potência para dados assimétricos. Aqui a inferência estatística é realizada desde uma perspectiva clássica usando o método de máxima verossimilhança junto com o método de integração numérica de Gauss-Hermite para aproximar as integrais envolvidas na função de verossimilhança. Mais tarde, o modelo linear com interceptos aleatórios para dados duplamente censurados é estudado. Este modelo é desenvolvido sob a suposição de que os erros e os efeitos aleatórios seguem distribuições normal-potência e normal- assimétrica. Para todos os modelos estudados foram realizados estudos de simulação a fim de estudar as suas bondades de ajuste e limitações. Finalmente, ilustram-se todos os métodos propostos com dados reais. / In this work some extensions of the alpha-power models are presented, assuming the context in which the observations are censored or limited. Initially we propose a new asymmetric model that extends the skew-t (Azzalini e Capitanio, 2003) and power-t (Zhao e Kim, 2016) models and includes the Students t-distribution as a particular case. This new model is able to adjust data with a high degree of asymmetry and cursose, even higher than the skew-t and power-t models. Then we extend the power-t model to situations in which the data present censorship, with a high degree of asymmetry and heavy tails. This model generalizes the Students t linear censored regression model t by Arellano-Valle et al. (2012) The work also introduces the power-normal linear mixed model for asymmetric data. Here statistical inference is performed from a classical perspective using the maximum likelihood method together with the Gauss-Hermite numerical integration method to approximate the integrals involved in the likelihood function. Later, the linear model with random intercepts for doubly censored data is studied. This model is developed under the assumption that errors and random effects follow power-normal and skew-normal distributions. For all the models studied, simulation studies were carried out to study their benefits and limitations. Finally, all proposed methods with real data are illustrated.
|
12 |
Avaliação de valores em risco em séries de retorno financeiro / Value at risk evaluation in financial return time seriesGomes, Camilla Ferreira 18 December 2017 (has links)
Os métodos geralmente empregados no mercado para o cálculo de medidas de risco baseiam-se na distribuição adotada para os retornos financeiros. Quando a distribuição Normal é adotada, estas avaliações tendem a subestimar o Value at Risk (valor em risco - VaR), pois a distribuição Normal tem caudas mais leves que as observadas nas séries financeiras. Muitas distribuições alternativas vêm sendo propostas na literatura, contudo qualquer modelo alternativo proposto deve ser avaliado com relação ao esforço computacional gasto para cálculo do valor em risco e comparado à simplicidade proporcionada pelo uso da distribuição Normal. Dessa forma, esta dissertação visa avaliar alguns modelos para cálculo do valor em risco, como a modelagem por quantis empíricos, a distribuição Normal e o modelo autorregressivo (AR), para verificação do melhor ajuste à cauda das distribuições das séries de retornos financeiros, além de avaliar o impacto do VaR para o ano seguinte. Nesse contexto, destaca-se o modelo autorregressivo com heterocedasticidade condicional (ARCH) capaz de detectar a volatilidade envolvida nas séries financeiras de retorno. Esse modelo tem-se mostrado mais eficiente, capaz de gerar informações relevantes aos investidores e ao mercado financeiro, com um esforço computacional moderado. / The most used methods for risk evaluation in the financial market usually depend strongly on the distribution assigned to the financial returns. When we assign a normal distribution, results tend to underestimate the Value at Risk (VaR), since the normal distribution usually has a lighter tail than those from the empirical distribution of financial time series. Many other distributions have been proposed in the literature, but we need to evaluate their computational effort for obtaining the value at risk when compared to the easiness of calculation of the normal distribution. In this work, we compare several models for calculating the value at risk, such as the normal, the empirical-quantile and the autoregressive (AR) models, evaluating their goodness-of-fit to the tail of the distribution of financial return time series and the impact of applying the calculated VaR to the following year. We also highlight the autoregressive conditional heteroskedasticity (ARCH) model due to its performance in detecting the volatility in the series. The ARCH model has proved to be efficient and able to generate relevant information to the investors and to the financial market with a moderate computational cost.
|
13 |
Avaliação de valores em risco em séries de retorno financeiro / Value at risk evaluation in financial return time seriesCamilla Ferreira Gomes 18 December 2017 (has links)
Os métodos geralmente empregados no mercado para o cálculo de medidas de risco baseiam-se na distribuição adotada para os retornos financeiros. Quando a distribuição Normal é adotada, estas avaliações tendem a subestimar o Value at Risk (valor em risco - VaR), pois a distribuição Normal tem caudas mais leves que as observadas nas séries financeiras. Muitas distribuições alternativas vêm sendo propostas na literatura, contudo qualquer modelo alternativo proposto deve ser avaliado com relação ao esforço computacional gasto para cálculo do valor em risco e comparado à simplicidade proporcionada pelo uso da distribuição Normal. Dessa forma, esta dissertação visa avaliar alguns modelos para cálculo do valor em risco, como a modelagem por quantis empíricos, a distribuição Normal e o modelo autorregressivo (AR), para verificação do melhor ajuste à cauda das distribuições das séries de retornos financeiros, além de avaliar o impacto do VaR para o ano seguinte. Nesse contexto, destaca-se o modelo autorregressivo com heterocedasticidade condicional (ARCH) capaz de detectar a volatilidade envolvida nas séries financeiras de retorno. Esse modelo tem-se mostrado mais eficiente, capaz de gerar informações relevantes aos investidores e ao mercado financeiro, com um esforço computacional moderado. / The most used methods for risk evaluation in the financial market usually depend strongly on the distribution assigned to the financial returns. When we assign a normal distribution, results tend to underestimate the Value at Risk (VaR), since the normal distribution usually has a lighter tail than those from the empirical distribution of financial time series. Many other distributions have been proposed in the literature, but we need to evaluate their computational effort for obtaining the value at risk when compared to the easiness of calculation of the normal distribution. In this work, we compare several models for calculating the value at risk, such as the normal, the empirical-quantile and the autoregressive (AR) models, evaluating their goodness-of-fit to the tail of the distribution of financial return time series and the impact of applying the calculated VaR to the following year. We also highlight the autoregressive conditional heteroskedasticity (ARCH) model due to its performance in detecting the volatility in the series. The ARCH model has proved to be efficient and able to generate relevant information to the investors and to the financial market with a moderate computational cost.
|
14 |
Modelos da teoria de resposta ao item multidimensionais assimétricos de grupos múltiplos para respostas dicotômicas sob um enfoque bayesiano / Assimetric multidimensional item response theory models for multiple groups and dichotomic responses under a bayesian perspectivePadilla Gómez, Juan Leonardo, 1989- 03 June 2014 (has links)
Orientadores: Caio Lucidius Naberezny Azevedo, Dalton Francisco de Andrade / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-24T22:30:44Z (GMT). No. of bitstreams: 1
PadillaGomez_JuanLeonardo_M.pdf: 10775900 bytes, checksum: 50bc9965f728b4b04b42b7428c3ec8ab (MD5)
Previous issue date: 2014 / Resumo: No presente trabalho propõe-se novos modelos da Teoria de Resposta ao Item Multidimensional (TRIM) para respostas dicotômicas ou dicotomizadas considerando uma estrutura de grupos múltiplos. Para as distribuições dos traços latentes de cada grupo, propõe-se uma nova parametrização da distribuição normal assimétrica multivariada centrada, que combina as propostas de Lachos (2004) e de Arellano-Valle et.al (2008), a qual não só garante a identificabilidade dos modelos aqui introduzidos, mas também facilita a interpretação e estimação dos seus parâmetros. Portanto, nosso modelo representa uma alternativa interessante, para solucionar os problemas de falta de identificabilidade encontrados por Matos (2010) e Nojosa (2008), nos modelos multidimensionais assimétricos de um único grupo por eles desenvolvidos. Estudos de simulação, considerando vários cenários de interesse prático, foram conduzidos a fim de avaliar o potencial da tríade: modelagem, métodos de estimação e ferramentas de diagnósticos. Os resultados indicam que os modelos considerando a assimetria nos traços latentes, em geral, forneceram estimativas mais acuradas que os modelos tradicionais. Para a seleção de modelos, utilizou-se o critério de informação deviance (DIC), os valores esperados do critério de informação de Akaike (EAIC) e o critério de informação bayesiano (EBIC). Em relação à verificação da qualidade do ajuste de modelos, explorou-se alguns métodos de checagem preditiva a posteriori, os quais fornecem meios para avaliar a qualidade tanto do instrumento de medida, quanto o ajuste do modelo de um ponto de vista global e em relação à suposições específicas, entre elas a dimensão do teste. Com relação aos métodos de estimação, adaptou-se e implementou-se vários algoritmos MCMC propostos na literatura para outros modelos, inclusive a proposta de aceleração de convergência de González (2004), os quais foram comparados em relação aos aspectos de qualidade de convergência através do critério de tamanho efetivo da amostra de Sahu (2002). A análise de um conjunto de dados reais, referente à primeira fase do vestibular da UNICAMP de 2013 também foi realizada / Abstract: In this work it is proposed a new class of Multidimensional Item Response Theory (MIRT) models for dichotomic or dichotomized answers considering a multiple group structure. For the latent traits distribution of each group, it is proposed a new parametrization of the centered multivariate skew normal distribution, which combines the proposed by Lachos (2004) and the one proposed by Arellano-Valle et.al (2008), which not only ensures de identifiability of our proposed models, but also it makes simpler the interpretation and estimation of their parameters. Hence, our model stands as an important alternative, in order to solve the identifiability problems found for the one group multidimensional skewed models proposed by Matos (2010) and Nojosa (2008). Simulation studies, taking into account some situations of practical interest, were conducted in order to evaluate the potential of the triad: modeling, estimation methods and diagnostic tools. The results indicate that the models considering a skew component on the latent traits, in general, produced more accurate results than those ones obtained with the symmetric models. For model selection, it was used the deviance information criterion (DIC), the expected values of both the Akaike¿s information criterion (EAIC) and bayesian information criteron (EBIC). Concerning assessment of model fit quality, it was explored posterior predictive checking methods, which allows for evaluating the quality of the measure instrument as well as the quality fit of the model from a global point of view and related to specific assumptions, as the test dimensionality. Concerning the estimation methods, it was adopted and implemented several MCMC algorithms proposed in the literature for other models, including the convergence accelerating propose algorithm by Gonzalez (2004), which were compared concerning some convergence quality aspects through the Sahu (2002) effective sample size. The analysis of a real data set, from the 2013 first stage of the UNICAMP admission exam was done as well / Mestrado / Estatistica / Mestre em Estatística
|
15 |
Um modelo de resposta ao item para grupos múltiplos com distribuições normais assimétricas centralizadas / A multiple group IRT model with skew-normal latent trait distribution under the centred parametrizationSantos, José Roberto Silva dos, 1984- 20 August 2018 (has links)
Orientador: Caio Lucidius Naberezny Azevedo / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T09:23:25Z (GMT). No. of bitstreams: 1
Santos_JoseRobertoSilvados_M.pdf: 2068782 bytes, checksum: f8dc91d2f7f6091813ba229dc12991f4 (MD5)
Previous issue date: 2012 / Resumo: Uma das suposições dominantes nos modelos de resposta ao item (MRI) é a suposição de normalidade simétrica para modelar o comportamento dos traços latentes. No entanto, tal suposição tem sido questionada em vários trabalhos como, por exemplo, nos trabalhos de Micceri (1989) e Bazán et.al (2006). Recentemente Azevedo et.al (2011) propuseram um MRI com distribuição normal assimétrica centralizada para os traços latentes, considerando a estrutura de um único grupo de indivíduos. No presente trabalho fazemos uma extensão desse modelo para o caso de grupos múltiplos. Desenvolvemos dois algoritmos MCMC para estimação dos parâmetros utilizando a estrutura de dados aumentados para representar a função de resposta ao item (FRI), veja Albert (1992). O primeiro é um amostrador de Gibbs com passos de Metropolis-Hastings. No segundo utilizamos representações estocásticas (gerando uma estrutura hierárquica) das densidades a priori dos traços latentes e parâmetros populacionais conseguindo, assim, formas conhecidas para todas as distribuições condicionais completas, o que nos possibilitou desenvolver o amostrador de Gibbs completo. Comparamos esses algoritmos utilizando como critério o tamanho efetivo de amostra, veja Sahu (2002). O amostrador de Gibbs completo obteve o melhor desempenho. Também avaliamos o impacto do número de respondentes por grupo, número de itens por grupo, número de itens comuns, assimetria da distribuição do grupo de referência e priori, na recuperação dos parâmetros. Os resultados indicaram que nosso modelo recuperou bem todos os parâmetros, principalmente, quando utilizamos a priori de Jeffreys. Além disso, o número de itens por grupo e o número de examinados por grupo, mostraram ter um alto impacto na recuperação dos traços latentes e parâmetros dos itens, respectivamente. Analisamos um conjunto de dados reais que apresenta indícios de assimetria na distribuição dos traços latentes de alguns grupos. Os resultados obtidos com o nosso modelo confirmam a presença de assimetria na maioria dos grupos. Estudamos algumas medidas de diagnóstico baseadas na distribuição preditiva de medidas de discrepância adequadas. Por último, comparamos os modelos simétrico e assimétrico utilizando os critérios sugeridos por Spiegelhalter et al. (2002). O modelo assimétrico se ajustou melhor aos dados segundo todos os critérios / Abstract: An usual assumption for parameter estimation in the Item Response Models (IRM) is to assume that the latent traits are random variables which follow a normal distribution. However, many works suggest that this assumption does not apply in many cases. For example, the works of Micceri (1989) and Bazán (2006). Recently Azevedo et.al (2011) proposed an IRM with skew-normal distribution under the centred parametrization for the latent traits, considering one single group of examinees. In the present work, we developed an extension of this model to account for multiple groups. We developed two MCMC algorithms to parameter estimation using the augmented data structure to represent the Item response function (IRF), see Albert (1992). The First is a Metropolis-Hastings within Gibbs sampling. In the second, we use stochastic representations (creating a hierarchical structure) in the prior distribution of the latent traits and population parameters. Therefore, we obtained known full conditional distributions, which enabled us to develop the full Gibbs sampler. We compared these algorithms using the effective sample size criteria, see Sahu (2002). The full Gibbs sampling presented the best performance. We also evaluated the impact of the number of examinees per group, number of items per group, number of common items, priors and asymmetry of the reference group, on the parameter recovery. The results indicated that our approach recovers properly all parameters, mainly, when we consider the Jeffreys prior. Furthermore, the number of items per group and the number of examinees per group, showed to have a high impact on the recovery of the true of latent traits and item parameters, respectively. We analyze a real data set in which we found an evidence of asymmetry in the distribution of latent traits of some groups. The results obtained with our model confirmed the presence of asymmetry in most groups. We studied some diagnostic measures based on predictive distribution of appropriate discrepancy measures. Finally, we compared the symmetric and asymmetric models using the criteria suggested by Spiegelhalter et al. (2002). The asymmetrical model fits better according to all criteria / Mestrado / Estatistica / Mestre em Estatística
|
16 |
Modelos de regressão Birnbaum-Saunders baseados na distribuição normal assimétrica centrada / Birnbaum-Saunders regression models based on skew-normal centered distributionChaves, Nathalia Lima, 1989- 26 August 2018 (has links)
Orientadores: Caio Lucidius Naberezny Azevedo, Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:33:37Z (GMT). No. of bitstreams: 1
Chaves_NathaliaLima_M.pdf: 3044792 bytes, checksum: 8fea3cd9d074997b605026a7a4526c35 (MD5)
Previous issue date: 2015 / Resumo: A classe de modelos Birnbaum-Saunders (BS) foi desenvolvida a partir de problemas que surgiram na área de confiabilidade de materiais. Tais problemas, em geral, são ligados ao estudo de fadiga de materiais. No entanto, nos últimos tempos, essa classe de modelos tem sido aplicada em áreas fora do referido contexto como, por exemplo, em ciências da saúde, ambiental, florestal, demográficas, atuariais, financeira, entre outras, devido à sua grande versatilidade. Neste trabalho desenvolvemos a distribuição Birnbaum-Saunders (BS) baseada na normal assimétrica padrão sob a parametrização centrada (BSNAC) que, além de representar uma extensão da distribuição BS usual, apresenta diversas vantagens em relação à distribuição BS baseada na distribuição normal assimétrica sob a parametrização usual. Desenvolvemos também um modelo de regressão linear log-Birnbaum-Saunders. Apresentamos, tanto para a distribuição BSNAC quanto para o respectivo modelo de regressão, diversas propriedades. Desenvolvemos procedimentos de estimação sob os enfoques frenquentista e bayesiano, bem como ferramentas de diagnóstico para os modelos propostos, contemplando análise residual e medidas de influência. Realizamos estudos de simulação, considerando diferentes cenários, com o intuito de comparar as estimativas frequentistas e bayesianas, bem como avaliar o desempenho das medidas de diagnóstico. A metodologia aqui proposta foi ilustrada tanto com dados provenientes de estudos de simulação, quanto com conjuntos de dados reais / Abstract: The class of Birnbaum-Saunders (BS) models was developed from problems that arose in the field of material reliability. These problems generally are related to the study of material fatigue. However, in the last years, this class of models has been applied in areas outside that context, such as in health sciences, environmental, forestry, demographic, actuarial, financial, among others, due to its great versatility. In this work, we developed the skew-normal Birnbaum-Saunders distribution under the centered parameterization (BSNAC), which also represents an extension of the usual BS distribution and presents several advantages over the BS distribution based on the skew-normal distribution under the usual parameterization. We also developed a log-Birnbaum-Saunders linear regression model. We present several properties of both BSNAC distribution and the related regression model. We develop estimation procedures under the frequentist and Bayesian approaches, as well as diagnostic tools for the proposed models, contemplating residual analysis and measures of influence. We conducted simulation studies considering different scenarios, in order to compare the frequentist and Bayesian estimates and evaluate the performance of diagnostic measures. The methodology proposed here is illustrated with data sets from both simulation studies and real data sets / Mestrado / Estatistica / Mestra em Estatística
|
17 |
The new class of Kummer beta generalized distributions: theory and applications / A nova classe de distribuições Kummer beta generalizada: teoria e aplicaçõesPescim, Rodrigo Rossetto 06 December 2013 (has links)
In this study, a new class of generalized distributions was developed, based on the Kummer beta distribution (NG; KOTZ, 1995), which contains as particular cases the exponentiated and beta generators of distributions. The main feature of the new family of distributions is to provide greater flexibility to the extremes of the density function and therefore, it becomes suitable for analyzing data sets with high degree of asymmetry and kurtosis. Also, two new distributions belonging to the new class of distributions, based on the Birnbaum-Saunders and generalized gamma distributions, that has as main characteristic the hazard function which assumes different forms (unimodal, bathtub shape, increase, decrease) were studied. In all studies, general mathematical properties such as ordinary and incomplete moments, generating function, mean deviations, reliability, entropies, order statistics and their moments were discussed. The estimation of parameters is approached by the method of maximum likelihood and Bayesian analysis and the observed information matrix is derived. It is also considered the likelihood ratio statistics and formal goodness-of-fit tests to compare all the proposed distributions with some of its sub-models and non-nested models. The developed results for all studies were applied to six real data sets. / Neste trabalho, foi proposta uma nova classe de distribuições generalizadas, baseada na distribuição Kummer beta (NG; KOTZ, 1995), que contém como casos particulares os geradores exponencializado e beta de distribuições. A principal característica da nova família de distribuições é fornecer grande flexibilidade para as extremidades da função densidade e portanto, ela torna-se adequada para a análise de conjuntos de dados com alto grau de assimetria e curtose. Também foram estudadas duas novas distribuições que pertencem à nova família de distribuições, baseadas nas distribuições Birnbaum-Saunders e gama generalizada, que possuem função de taxas de falhas que assumem diferentes formas (unimodal, forma de banheira, crescente e decrescente). Em todas as pesquisas, propriedades matemáticas gerais como momentos ordinários e incompletos, função geradora, desvios médio, confiabilidade, entropias, estatísticas de ordem e seus momentos foram discutidas. A estimação dos parâmetros é abordada pelo método da máxima verossimilhança e pela análise bayesiana e a matriz de informação observada foi derivada. Considerou-se, também, a estatística de razão de verossimilhanças e testes formais de qualidade de ajuste para comparar todas as distribuições propostas com alguns de seus submodelos e modelos não encaixados. Os resultados desenvolvidos foram aplicados a seis conjuntos de dados.
|
18 |
Aplicações estatísticas na área industrial / Statistical applications in the industrial areaSilva, Gecirlei Francisco da 10 June 2009 (has links)
Apresentamos algumas aplicações de ferramentas estatísticas que são comumente utilizadas na melhoria da qualidade de processos industriais. Inicialmente, desenvolveu-se procedimentos para testar a competência de laboratórios que participam de programas de ensaios de proficiência. Em situações onde os laboratórios medem várias vezes no mesmo ponto, utilizou-se o modelo de erros de medição, proposto por Jaech [39](1985). Além disso, a inferência sobre os parâmetros de tendência aditiva foi generalizada para a classe de distribuições elípticas. A competência dos laboratórios é avaliada pelo teste da razão de verossimilhança generalizada, do qual, obtemos a distribuição exata para a estatística proposta. Em situações onde os laboratórios medem várias vezes em vários pontos e a variável em análise apresenta variações naturais, utilizou-se o modelo com erro nas variáveis. Diante disso, vamos estender o modelo estrutural definido em Barnett [13] (1969) para o modelo ultra-estrutural com réplicas. Neste caso, vamos avaliar não somente a tendência aditiva, mas também, a tendência multiplicativa, ou seja, avaliar a linearidade das medições. As estimativas dos parâmetros foram obtidas via procedimento do algorítmo EM, com isso, desenvolvemos os teste de Wald, razão de verossimilhança e escore para avaliar a competência dos laboratórios. Nos dois modelos propostos, generalizamos o erro normalizado (En) sugerido pelo Guia 43 [37] para testar a competência dos laboratórios participantes de programas de ensaio de proficiência. Apresentamos também, um procedimento para calcular índices de performance para processos univariados e multivariados. Nestes casos, consideramos que a distribuição dos dados segue uma distribuição Normal assimétrica. Além disso, apresentamos uma análise de simulação onde concluímos que a presença de assimetria nos dados pode causar interpretações erradas sobre o processo, quando a distribuição assumida para os dados é a Normal / We present some applications of statistical tools that are used in the improvement of the quality of industrial processes. Initially, we develop procedures to test the ability of laboratories that participate of programs of proficiency test. In situations where the laboratories measure several times in the same point, we use the model of errors of measurement, considered for Jaech [39](1985). Moreover, the inference on the parameters additive bias was generalized for the class of elliptical distributions. The ability of the laboratories is evaluated by the generalized likelihood ratio test, of which, we get the accurate distribution for the statistics proposal. In situations where the laboratories measure some times in some points and the variable in analysis presents natural variations, uses the model with error in the variable. With this, we go to extend the model structural defined in Barnett [13] (1969) for the ultrastructural model with replicate. In this case, we go to not only evaluate the bias additive, but also, the bias multiplicative, that is, to evaluate the linearity of the measurements. The estimates of the parameters had been gotten by the procedure of the EM algorithm, with this, develop of Wald, likelihood ratio and score test to evaluate the ability of the laboratories. In the two considered models, we generalize the normalized error (En) suggested for Guide 43 [37] to test the ability of the participant laboratories of programs of proficiency test. We also present, a procedure to calculate index of performance for univariate and multivariate processes. In these cases, we consider that the distribution of the data follows a skew Normal distribution. Moreover, we present a simulation analysis where we conclude that the presence of asymmetry in the data can cause interpretations missed on the process, when the distribution assumed for the data is the Normal
|
19 |
Distribuição de probabilidade e dimensionamento amostral para tamanho de partícula em gramíneas forrageiras / Probability distribution and sample dimension for particle size in forage grassesNavarette López, Claudia Fernanda 16 January 2009 (has links)
O objetivo deste trabalho foi identificar a distribuição de probabilidade da variável tamanho de partícula em gramíneas forrageiras e fazer um dimensionamento amostral. Para isto foi realizada uma analise exploratória dos dados obtidos de um experimento planejado em blocos casualizados, a cada sub-amostra do conjunto de dados foram ajustadas as distribuições normal, gama, beta e Weibull. Foram realizados os testes de aderência não paramétricos de Kolmogorov-Smirnov, Lilliefos, Cramer-von Mises e Anderson-Darling para avaliar o ajuste as distribuições. A estimativa do valor do logaritmo da função de máxima verossimilhança e indicativo da distribuição que melhor descreveu o conjunto de dados, assim como os critérios de informação de Akaike (AIC) e de informação bayesiano (BIC). Foram feitas simulações a partir dos parâmetros obtidos e feitos os testes não paramétricos para avaliar o ajuste com diferentes tamanhos de amostras. Encontrou-se que os dados n~ao seguem a distribuição normal, pois há assimetria nos histogramas melhor descritos pelas distribuições beta e Weibull. Os testes mostraram que as distribuições gama, beta e Weibull ajustam-se melhor aos dados porem pelo maior valor do logaritmo da função de verossimilhança, assim como pelos valores AIC e BIC, o melhor ajuste foi dado pela distribuição Weibull. As simulações mostraram que com os tamanhos n de 2 e 4 com 10 repetições cada, as distribuições gama e Weibull apresentaram bom ajuste aos dados, a proporção que o n cresce a distribuição dos dados tende a normalidade. O dimensionamento dado pela Amostra Aleatória Simples (ASA), mostrou que o tamanho 6 de amostra e suficiente, para descrever a distribuição de probabilidade do tamanho de partícula em gramíneas forrageiras / The purpose of this study was to identify the probability distribution of variable particle size in forages grasses and to do a sample dimension. For this was carried out an exploratory analysis of the data obtained from the experiment planned in randomized blocks. Each sample of the overall data was adjusted to Normal, Gama, Beta and Weibull distributions. Tests of adhesion not parametric of Kolmogorov-Smirnov, Lilliefos, Cramer-von Mises and Anderson-Darling were conducted to indicate the adjustment at the distributions. The estimate of the value of the logarithm of function of maximum likelihood is indicative of distribution that better describes the data set, as well as information criteria of Akaike (AIC) and Bayesian information (BIC). Simulations from parameters obtained were made and tests not parametric to assess the t with dierent sizes of samples were made too. It was found that data are not normal, because have asymmetry in the histograms, better described by Beta and Weibull distributions. Tests showed that Gamma, Beta and Weibull distributions, have a ts better for the data; for the highest value in the logarithm of the likelihood function as well as smaller AIC and BIC, best t was forWeibull distribution. Simulations showed that with 2 and 4 sizes (n), with 10 repeat each one, the Gama and Weibull distributions showed good t to data, as the proportion in which n grows, distribution of data tends to normality. Dimensioning by simple random sample (ASA), showed that 6 is a sucient sample size to describe probability distribution for particle size in forage grasses.
|
20 |
Melhoramento do resíduo de Wald em modelos lineares generalizados / Improvement of Wald residual in generalized linear modelsUrbano, Mariana Ragassi 18 December 2008 (has links)
A teoria dos modelos lineares generalizados é muito utilizada na estatística, para a modelagem de observações provenientes da distribuição Normal, mas, principalmente, na modelagem de observações cuja distribuição pertença à família exponencial de distribuições. Alguns exemplos são as distribuições binomial, gama, normal inversa, dentre outras. Ajustado um modelo, para vericar a adequação do ajuste, são aplicadas técnicas de diagnósticos e feita uma análise de resíduos. As propriedades dos resíduos para modelos lineares generalizados não são muito conhecidas e resultados assintóticos são o único recurso. Este trabalho teve como objetivo estudar as propriedades assintóticas do resíduo de Wald, e realizar correções para que sua distribuição se aproxime de uma distribuição normal padrão. Uma aplicação das correções para o resíduo de Wald foi feita para cinco conjuntos de dados. Em dois conjuntos, a variável resposta apresentava-se na forma de contagem, e para a modelagem utilizou-se a distribuição de Poisson. Dois outros conjuntos são provenientes de delineamentos experimentais inteiramente casualizados, com variável resposta contínua e para a modelagem utilizou-se a distribuição normal, e para o último conjunto, o interesse era modelar a proporção, e utilizou-se a distribuição binomial. Um estudo de simulação foi conduzido, utilizando-se o método de Monte Carlo, e concluiu-se, que com as correções realizadas no resíduo de Wald, houve uma melhora signicativa em sua distribuição, sendo que a versão melhorada do resíduo tem distribuição que aproxima mais de uma distribuição normal padrão. / The theory of generalized linear models is very used in statistics, not only for modeling data normally distributed, but in the modeling of data whose distribution belongs to the exponential family of distributions. Some examples are binomial, gamma and inverse Gaussian distribution, among others. After tting a model in order to check the adequacy of tting, diagnostic techniques are used. The properties of residuals in generalized linear models are not well known, and asymptotic results are the only recourse. This work aims to study the asymptotic properties of Wald residual, and to obtain corrections to make the distribution of the modied residuals closer to standard normal. An application of the corrections for Wald residuals was done to ve datasets. In two datasets the response variables were counts, and to model, was used the Poisson distribution. Other two datasets are provided from a completely randomized design with a continuous response, and to model, was used the normal distribution, and, in the last dataset the interest was to model the proportion and the binomial distribution was used. A Monte Carlo simulation, was performed showing that the distribution of the corrected Wald residuals, is more close to the standard normal distribution.
|
Page generated in 0.0589 seconds