• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 330
  • 190
  • 18
  • 10
  • 9
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 647
  • 647
  • 288
  • 282
  • 259
  • 226
  • 198
  • 160
  • 148
  • 141
  • 133
  • 124
  • 122
  • 117
  • 110
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Modeling the Economics and Market Adoption of Distributed Power Generation

Maribu, Karl Magnus January 2006 (has links)
<p>After decades of power generating units increasing in size, there is currently a growing focus on distributed generation, power generation close to energy loads. Investments in large-scale units have been driven by economy of scale, but recent technological improvements on small generating plants have made it possible to exploit the benefits of local power generation to a larger extent than previously. Distributed generation can improve power system efficiency because heat can be recovered from thermal units to supply heat and thermally activated cooling, and because small-scale renewables have a promising end-user market. Further benefits of distributed generation include improved reliability, deferral of often controversial and costly grid investments and reduction of grid losses. The new appeal of small-scale power generation means that there is a need for new tools to analyze distributed generation, both from a system perspective and from the perspective of potential developers. In this thesis, the focus is on the value of power generation for end-users. The thesis identifies how an end-user can find optimal distributed generation systems and investment strategies under a variety of economic and regulatory scenarios. The final part of the thesis extends the analysis with a bottom-up model of how the economics of distributed generation for a representative set of building types can transfer to technology diffusion in a market.</p><p>Four separate research papers make up the thesis. In the first paper, Optimal Investment Strategies in Decentralized Renewable Power Generation under Uncertainty, a method for evaluation of investments in renewable power units under price uncertainty is presented. It is assumed the developer has a building with an electricity load and a renewable power resource. The case study compares a set of wind power systems with different capacity and finds that capacity depends on the electricity price and that there under uncertain prices can be a significant value in postponing investment until larger projects are profitable. In the second paper, Combined Heat and Power in Commercial Buildings: Investment and Risk Analysis, a Monte Carlo simulation program to find the value and risk characteristics of combined heat and power units is presented. Using historical price data to estimate price process parameters, it is shown that uncertain prices should not be a barrier for investment, since on-site generators can adapt to uncertain prices and reduce the total energy cost risks. In, Optimizing Distributed Generation Systems for Commercial Buildings, which uses a mixed integer linear program, distributed generation portfolios that maximize profitability are tailored to a building's energy load. Distributed generation with heat recovery and thermally activated cooling are found profitable in an office and a health care building, using current generator data and energy tariffs from California. With the fourth paper, Distributed Energy Resources Market Diffusion Model, the analysis is taken a step further to predict distributed generation market diffusion. Market penetration is assumed to depend on economic attractiveness and knowledge and trust in the technologies. A case study based on the U.S. commercial sector depicts a large market for reciprocating engines and microturbines, with the West and Northeast regions driving market diffusion. Technology research and outreach programs can speed up and change the path of capacity expansion.</p><p>The thesis presents three different models for analyzing investments in distributed generation, all of which have benefits and disadvantages. Choice of model depends on the specific application, but the different approaches can be used on the same problem to analyze it from different viewpoints. The cases in the thesis indicate that distributed generation can reduce expected energy costs while at the same time improve cost predictability. Further, the thesis identifies several important factors and potential barriers to distributed generation adoption. Analyzing distributed generation from the end-user perspective is important also for policy makers, because of the importance of estimating how the market will react to potential policy measures. The thesis shows that small-scale generating capacity has the potential to increase in the near future. Further research should increase the understanding of economic and environmental issues related to distributed generation, while policy makers should aim to construct and implement measures that make it attractive for end-users to invest in efficient local generating capacity.</p>
122

On the Benefits of Distributed Generation of Wind Energy in Europe

06 September 2000 (has links)
No description available.
123

Modeling the Economics and Market Adoption of Distributed Power Generation

Maribu, Karl Magnus January 2006 (has links)
After decades of power generating units increasing in size, there is currently a growing focus on distributed generation, power generation close to energy loads. Investments in large-scale units have been driven by economy of scale, but recent technological improvements on small generating plants have made it possible to exploit the benefits of local power generation to a larger extent than previously. Distributed generation can improve power system efficiency because heat can be recovered from thermal units to supply heat and thermally activated cooling, and because small-scale renewables have a promising end-user market. Further benefits of distributed generation include improved reliability, deferral of often controversial and costly grid investments and reduction of grid losses. The new appeal of small-scale power generation means that there is a need for new tools to analyze distributed generation, both from a system perspective and from the perspective of potential developers. In this thesis, the focus is on the value of power generation for end-users. The thesis identifies how an end-user can find optimal distributed generation systems and investment strategies under a variety of economic and regulatory scenarios. The final part of the thesis extends the analysis with a bottom-up model of how the economics of distributed generation for a representative set of building types can transfer to technology diffusion in a market. Four separate research papers make up the thesis. In the first paper, Optimal Investment Strategies in Decentralized Renewable Power Generation under Uncertainty, a method for evaluation of investments in renewable power units under price uncertainty is presented. It is assumed the developer has a building with an electricity load and a renewable power resource. The case study compares a set of wind power systems with different capacity and finds that capacity depends on the electricity price and that there under uncertain prices can be a significant value in postponing investment until larger projects are profitable. In the second paper, Combined Heat and Power in Commercial Buildings: Investment and Risk Analysis, a Monte Carlo simulation program to find the value and risk characteristics of combined heat and power units is presented. Using historical price data to estimate price process parameters, it is shown that uncertain prices should not be a barrier for investment, since on-site generators can adapt to uncertain prices and reduce the total energy cost risks. In, Optimizing Distributed Generation Systems for Commercial Buildings, which uses a mixed integer linear program, distributed generation portfolios that maximize profitability are tailored to a building's energy load. Distributed generation with heat recovery and thermally activated cooling are found profitable in an office and a health care building, using current generator data and energy tariffs from California. With the fourth paper, Distributed Energy Resources Market Diffusion Model, the analysis is taken a step further to predict distributed generation market diffusion. Market penetration is assumed to depend on economic attractiveness and knowledge and trust in the technologies. A case study based on the U.S. commercial sector depicts a large market for reciprocating engines and microturbines, with the West and Northeast regions driving market diffusion. Technology research and outreach programs can speed up and change the path of capacity expansion. The thesis presents three different models for analyzing investments in distributed generation, all of which have benefits and disadvantages. Choice of model depends on the specific application, but the different approaches can be used on the same problem to analyze it from different viewpoints. The cases in the thesis indicate that distributed generation can reduce expected energy costs while at the same time improve cost predictability. Further, the thesis identifies several important factors and potential barriers to distributed generation adoption. Analyzing distributed generation from the end-user perspective is important also for policy makers, because of the importance of estimating how the market will react to potential policy measures. The thesis shows that small-scale generating capacity has the potential to increase in the near future. Further research should increase the understanding of economic and environmental issues related to distributed generation, while policy makers should aim to construct and implement measures that make it attractive for end-users to invest in efficient local generating capacity.
124

Distributed Generation - Power Electronic Converters, Communication and Control

Hoff, Erik Stjernholm January 2007 (has links)
This thesis tries to explain the changes in the control of power electronic converters that are possible by the use of communication. Many of the renewable energy sources such as photovoltaic panels are geographically dispersed. The power rating per generator is therefore typically low. If this kind of energy source should dominate an electrical grid, the number of generators must be high. There should also be means of controlling this large number of generators simultaneously and safely. The cost of safe communication may be too high compared to the power contribution of a single generator. The Internet offers a low-cost solution, but it cannot guarantee real-time properties. Similarly to the Internet itself, it is shown how communication errors can be detected and handled in a safe manner by the end-system, in this case the generator. The generator can detect a communication timeout, and change control algorithms in order to guard itself and the connected electricity grid. When necessary, it can also disconnect and work as a local standalone power supply. In order to be able to supply all kinds of loads, the generator (in this case an inverter) is primarily voltage controlled. This results in challenges concerning current distortion. The use of feed-forward for cancellation of common grid voltage harmonics is discussed, simulated and measured. An anti-islanding algorithm for voltage controlled inverters is also developed, simulated and measured in this thesis. A DC/DC-converter for optimized connection of a photovoltaic panel is built, exploiting the photovoltaic panel properties to reduce the size and the losses significantly. Although most contributions are connected to details and parts of the system, the interactions between communication and control are emphasized.
125

A Universal Islanding Detection Technique for Distributed Generation Using Pattern Recognition

Faqhruldin, Omar 22 August 2013 (has links)
In the past, distribution systems were characterized by a unidirectional power flow where power flows from the main power generation units to consumers. However, with changes in power system regulation and increasing incentives for integrating renewable energy sources, Distributed Generation (DG) has become an important component of modern distribution systems. However, when a portion of the system is energized by one or more DG and is disconnected from the grid, this portion becomes islanded and might cause several operational and safety issues. Therefore, an accurate and fast islanding detection technique is needed to avoid these issues as per IEEE Standard 1547-2003 [1]. Islanding detection techniques are dependent on the type of the DG connected to the system and can achieve accurate results when only one type of DG is used in the system. Thus, a major challenge is to design a universal islanding technique to detect islanding accurately and in a timely manner for different DG types and multiple DG units in the system. This thesis introduces an efficient universal islanding detection method that can be applied to both Inverter-based DG and Synchronous-based DG. The proposed method relies on extracting a group of features from measurements of the voltage and frequency at the Point of Common Coupling (PCC) of the targeted island. The Random Forest (RF) classification technique is used to distinguish between islanding and non-islanding situations with the goals of achieving a zero Non-Detection Zone (NDZ), which is a region where islanding detection techniques fail to detect islanding, as well as avoiding nuisance DG tripping during non-islanding conditions. The accuracy of the proposed technique is evaluated using a cross-validation technique. The methodology of the proposed islanding detection technique is shown to have a zero NDZ, 98% accuracy, and fast response when applied to both types of DGs. Finally, four other classifiers are compared with the Random Forest classifier, and the RF technique proved to be the most efficient approach for islanding detection.
126

Feasibility study of a VirtualPower Plant for Ludvika

Lundkvist, Johanna January 2013 (has links)
This thesis is a feasibility study of avirtual power plant (VPP) in centralSweden and part of a project withInnoEnergy Instinct and STRI. The VPPconsists of a wind park, small hydroplant as well as solar photovoltaic andenergy storage. The 50 kVsubtransmission network was modeled inorder to evaluate the network servicesthat could be provided by coordinatingexisting distributed energy resources inthe network. Simulations where performedusing measured hourly variations inproduction and consumption of allnetwork nodes. The studied networkservices included both reactive andactive power control.The aim of this thesis is to evaluatethe potential contribution from the VPPfor capacity firming in order to allow abalance responsible party to meet placedbids on the day-ahead spot market,minimize peak load in order to reducesubscribed power, decrease networklosses, the contribution from reactivepower control using the power convertersis studied. Comparisons of the economicgains from spot and balance markets ofthe VPP distributed energy resources aremade for each operation case.Sponsor: InnoEnergy / InnoEnergy Instinct
127

Advance control of multilevel converters for integration of distributed generation resources into ac grid

Pouresmaeil, Edris 27 March 2012 (has links)
Distributed generation (DG) with a converter interface to the power grid is found in many of the green power resources applications. This dissertation describes a multi-objective control technique of voltage source converter (VSC) based on multilevel converter topologies, for integration of DG resources based on renewable energy (and non-renewable energy)to the power grid. The aims have been set to maintain a stable operation of the power grid, in case of di erent types of grid-connected loads. The proposed method provides compensation for active, reactive, and harmonic load current components. A proportional-integral (PI) control law is derived through linearization of the inherently non-linear DG system model, so that the tasks of current control dynamics and dc capacitor voltage dynamics become decoupled. This decoupling allows us to control the DG output currents and the dc bus voltage independently of each other, thereby providing either one of these decoupled subsystems a dynamic response that signi cantly slower than that of the other. To overcome the drawbacks of the conventional method, a computational control delay compensation method, which delaylessly and accurately generates the DG reference currents, is proposed. The rst step is to extract the DG reference currents from the sensed load currents by applying the stationary reference frame and then transferred into synchronous reference frame method, and then, the reference currents are modi ed, so that the delay will be compensated. The transformed variables are used in control of the multilevel voltage source converter as the heart of the interfacing system between DG resources and power grid. By setting appropriate compensation current references from the sensed load currents in control circuit loop of DG link, the active, reactive, and harmonic load current components will be compensated with fast dynamic response, thereby achieving sinusoidal grid currents in phase with load voltages while required power of loads is more than the maximum injected power of the DG resources. The converter, which is controlled by the described control strategy, guarantees maximum injection of active power to the grid continuously, unity displacement power factor of power grid, and reduced harmonic load currents in the common coupling point. In addition, high current overshoot does not exist during connection of DG link to the power grid, and the proposed integration strategy is insensitive to grid overload. / La Generació Distribuïda (DG) injectada a la xarxa amb un convertidor estàtic és una solució molt freqüent en l'ús de molts dels recursos renovables. Aquesta tesis descriu una técnica de control multi-objectiu del convertidor en font de tensió (VSC), basat en les topologies de convertidor multinivell, per a la integració de les fonts distribuïdes basades en energies renovables i també de no renovables.Els objectius fixats van encaminats a mantenir un funcionament estable de la xarxa elèctrica en el cas de la connexió de diferents tipus de càrregues. El mètode de control proposat ofereix la possibilitat de compensació de les components actives i reactives de la potencia, i les components harmòniques del corrent consumit per les càrregues.La llei de control proporcional-Integral (PI) s’obté de la linearització del model inherentment no lineal del sistema, de forma que el problema de control del corrent injectat i de la tensió d’entrada del convertidor queden desacoblats. Aquest desacoblament permet el control dels corrents de sortida i la tensió del bus de forma independent, però amb un d’ells amb una dinàmica inferior.Per superar els inconvenients del mètode convencional, s’usa un retard computacional, que genera les senyals de referència de forma acurada i sense retard. El primer pas es calcular els corrents de referència a partir de les mesures de corrent. Aquest càlcul es fa primer transformant les mesures a la referència estacionaria per després transformar aquests valors a la referència síncrona. En aquest punt es on es poden compensar els retards.Les variables transformades son usades en els llaços de control del convertidor multinivell. Mitjançant aquests llaços de control i les referències adequades, el convertidor és capaç de compensar la potencia activa, reactiva i els corrents harmònics de la càrrega amb una elevada resposta dinàmica, obtenint uns corrents de la xarxa de forma completament sinusoïdal, i en fase amb les tensions.El convertidor, controlat amb el mètode descrit, garanteix la màxima injecció de la potencia activa, la injecció de la potencia reactiva per compensar el factor de potencia de la càrrega, i la reducció de les components harmòniques dels corrents consumits per la càrrega. A més, garanteix una connexió suau entre la font d’energia i la xarxa. El sistema proposat es insensible en front de la sobrecarrega de la xarxa
128

Operational and Planning Aspects of Distribution Systems in Deregulated Electricity Markets

Algarni, Ayed January 2008 (has links)
In the current era of deregulated electricity markets, the power distribution systems have attained a very important and crucial role in the industry. A distribution company (referred to as a disco) plays an active and effective role in electricity markets, and can positively impact the market efficiency and make it more reliable, secure and beneficial to customers. Therefore, operation and planning issues of discos in such electricity market environment requires extensive analysis and research in order to improve their operational strategies both in the short-term and long-term. A generic operations framework for a disco operating in a competitive electricity market environment is presented in the thesis. The operations framework is a two-stage hierarchical model in which the first stage deals with disco’s activities in the day-ahead stage, the Day Ahead Operations Model (DAOM). The second stage deals with disco’s activities in real-time and is termed Real-Time Operations Model (RTOM). The DAOM determines the disco’s operational decisions on grid purchase, scheduling of distributed generation (DG) units owned by it, and contracting for interruptible load. These decisions are imposed as boundary constraints in the RTOM and the disco seeks to minimize its short-term costs keeping in mind its day-ahead decisions. A case-study is presented considering the well-known 33-bus distribution system and three different scenarios are constructed to analyze the disco’s actions and decision-making in this context. The thesis presents a new paradigm for distribution system operation taking into account the presence of DG sources and their goodness factors. The proposed concept of goodness factor of DG units is based on the computation of the incremental contribution of a DG unit to distribution system losses. The incremental contributions of a DG unit to active and reactive power losses in the distribution system are termed as the active / reactive Incremental Loss Indices (ILI). The goodness factors are integrated directly into the distribution system operations model. This model seeks to minimize the disco’s energy costs in the short-term taking into account the contribution (goodness factor) of each DG unit. The analysis was carried out considering an 18-bus distribution network, considering two different ownership structures of DG units, and a 69-bus distribution system considering specific characteristics of wind-DG units. The concept of goodness factors is further extended to determine a new set of goodness factors pertaining to a DG’s impact on feeder unloading by virtue of its power injection. A novel long-term planning model has been developed for the disco that considers investments in DG capacity, distribution system feeder addition / expansion and substation transformers capacity addition. The model includes the new set of goodness factors pertaining to both loss reduction and feeder unloading and arrives at an optimal set of new expansion plan, with specified locations, and year of commissioning. The work clearly demonstrates the effectiveness and contribution of DG units in distribution systems both in the short-term and long-term framework.
129

Some Aspects of Distribution System Planning in the Context of Investment in Distributed Generation

Wong, Steven M. January 2009 (has links)
A paradigm shift in distribution system design and planning is being led by the deregulation of the power industry and the increasing adoption of distributed generation (DG). Technology advances have made DG investments feasible by both local distribution companies (LDCs) and small power producers (SPPs). LDCs are interested in finding optimal long term plans that best serve their customers at the lowest cost. SPPs, as private entities, are concerned about maximizing their rates of return. Also keenly interested in distribution design and planning is the government, which, through an electricity regulator, strives to meet DG penetration and emissions reduction goals through policy implementations. This thesis first examines the distribution system planning problem from the LDC's perspective. An innovative hierarchical dynamic optimization model is proposed for the planning of distribution systems and the energy scheduling of units that is also capable of reconciling uncoordinated SPP investments in DG. The first stage of the two-stage framework consists of a siting-cum-period planning model that sets element sizing and commissioning dates. The second stage consists of a capacity-cum-production planning model that finalizes element capacities and energy import/export and production schedules. The proposed framework is demonstrated on a 32-bus radial distribution system. Four case studies encompassing different policy sets are also conducted, demonstrating that this model's usefulness also extends to predicting the impact of different energy policies on distribution system operation and economics. The analysis of different policy sets is further expanded upon through the proposal of a new mathematical model that approaches the distribution design problem from the regulator's perspective. Various case studies examining policies that may be used by the regulator to meet DG penetration and emissions goals, through DG investment, are constructed. A combination of feed-in-tariffs, CO$_2$ tax, and cap-and-trade mechanisms are among the policies studied. The results, in the context of Ontario, Canada and its Standard Offer Program, are discussed, with respect to achieving objectives in DG investment, participation by SPPs, consumer costs, and uncertainty in carbon market prices. In jurisdictions such as Ontario, the LDC cannot invest in its own DG capacity but must accommodate those of SPPs. With the successful implementation of DG investment incentives by the regulator, there is a potential for significant investments in DG by SPPs, which may exceed that of the LDCs ability to absorb. This thesis proposes a novel method that can be used by the regulator or LDC to fairly assess, coordinate, and approve multiple competing investments proposals while maintaining operational feasibility of the distribution system. This method uses a feedback between the LDC and SPPs to achieve maximum investor participation while adhering to the technical operational limits of the distribution system. The proposed scheme is successfully demonstrated on a 32-bus radial distribution system, where it is shown to increase SPP-DG investments and production, improve the system's voltage profile, and reduce losses.
130

Operational and Planning Aspects of Distribution Systems in Deregulated Electricity Markets

Algarni, Ayed January 2008 (has links)
In the current era of deregulated electricity markets, the power distribution systems have attained a very important and crucial role in the industry. A distribution company (referred to as a disco) plays an active and effective role in electricity markets, and can positively impact the market efficiency and make it more reliable, secure and beneficial to customers. Therefore, operation and planning issues of discos in such electricity market environment requires extensive analysis and research in order to improve their operational strategies both in the short-term and long-term. A generic operations framework for a disco operating in a competitive electricity market environment is presented in the thesis. The operations framework is a two-stage hierarchical model in which the first stage deals with disco’s activities in the day-ahead stage, the Day Ahead Operations Model (DAOM). The second stage deals with disco’s activities in real-time and is termed Real-Time Operations Model (RTOM). The DAOM determines the disco’s operational decisions on grid purchase, scheduling of distributed generation (DG) units owned by it, and contracting for interruptible load. These decisions are imposed as boundary constraints in the RTOM and the disco seeks to minimize its short-term costs keeping in mind its day-ahead decisions. A case-study is presented considering the well-known 33-bus distribution system and three different scenarios are constructed to analyze the disco’s actions and decision-making in this context. The thesis presents a new paradigm for distribution system operation taking into account the presence of DG sources and their goodness factors. The proposed concept of goodness factor of DG units is based on the computation of the incremental contribution of a DG unit to distribution system losses. The incremental contributions of a DG unit to active and reactive power losses in the distribution system are termed as the active / reactive Incremental Loss Indices (ILI). The goodness factors are integrated directly into the distribution system operations model. This model seeks to minimize the disco’s energy costs in the short-term taking into account the contribution (goodness factor) of each DG unit. The analysis was carried out considering an 18-bus distribution network, considering two different ownership structures of DG units, and a 69-bus distribution system considering specific characteristics of wind-DG units. The concept of goodness factors is further extended to determine a new set of goodness factors pertaining to a DG’s impact on feeder unloading by virtue of its power injection. A novel long-term planning model has been developed for the disco that considers investments in DG capacity, distribution system feeder addition / expansion and substation transformers capacity addition. The model includes the new set of goodness factors pertaining to both loss reduction and feeder unloading and arrives at an optimal set of new expansion plan, with specified locations, and year of commissioning. The work clearly demonstrates the effectiveness and contribution of DG units in distribution systems both in the short-term and long-term framework.

Page generated in 0.137 seconds