• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Doubled quadratic division algebras /

Lindberg, Lars, January 2004 (has links) (PDF)
Lic. Uppsala : Univ., 2004.
2

Octonions and supersymmetry

Schray, J��rg 29 April 1994 (has links)
Graduation date: 1994
3

Division algebra representations of SO(4,2)

Kincaid, Joshua James 19 June 2012 (has links)
Representations of SO(4,2;R) are constructed using 4 x 4 and 2 x 2 matrices with elements in H' ��� C . Using 2 x 2 matrix representations of C and H', the 4 x 4 representation is interpreted in terms of 16 x 16 real matrices. Finally, the known isomorphism between the conformal group and SO(4,2;R) is written explicitly in terms of the 4 x 4 representation. The 4 x 4 construction should generalize to matrices with elements in K' ��� K for K any normed division algebra over the reals and K' any split algebra over the reals. / Graduation date: 2013
4

Connections and generalized gauge transformations

Davis, Simon January 2002 (has links)
The derivation of the standard model from a higher-dimensional action suggests a further study of the fibre bundle formulation of gauge theories to determine the variations in the choice of structure group that are allowed in this geometrical setting. The action of transformations on the projection of fibres to their submanifolds are characteristic of theories with fewer gauge vector bosons, and specific examples are given, which may have phenomenological relevance. The spinor space for the three generations of fermions in the standard model is described algebraically.
5

Cooperative Communication Protocols : Diversity-Multiplexing Gain Tradeoff And Code Constructions

Vinodh, K 07 1900 (has links)
Cooperative relay communication is a promising means of wireless communication in which cooperation is used to create a virtual transmit array between the source and the destination, thereby providing spatial diversity for combating the fading channel. In this thesis we develop cooperative communication protocols namely the orthogonal amplify-and-forward (OAF), non-orthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time code constructions are provided. The code construction is based on Cyclic Division Algebras. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the OAF and NAF protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. In the two-relay case, the variable-NSDF protocol is shown to improve on the DMT of the best previously-known static protocol for higher values of multiplexing gain. Our results also establish that the fixed-NSDF protocol has a better DMT than the NAF protocol for any number of relays.
6

Approximation faible et principe local-global pour certaines variétés rationnellement connexes / Weak approximation and local-global principle for certain rationally connected varieties

Hu, Yong 04 April 2012 (has links)
Cette thèse se concentre sur l'étude de quelques propriétés arithmétiques de certaines variétés algébriques qui sont ``les plus simples'' en un sens géométrique et qui sont définies sur des corps de type géométrique. Elle se compose de trois chapitres. Dans le premier chapitre, indépendant des deux autres, on s'intéresse à la propriété d'approximation faible pour une variété projective lisse rationnellement connexe X définie sur le corps de fonctions K=k(C) d'une courbe algébrique C sur un corps k. Supposons que X possède un K-point rationnel. En utilisant des méthodes géométriques, on démontre que X(K) est Zariski dense dans X si k est un corps fertile, et que l'approximation faible en un certain ensemble de places de bonne réduction vaut pour X sous des hypothèses supplémentaires convenables. Lorsque k est un corps fini, on obtient l'approximation faible en une place quelconque de bonne réduction pour une surface cubique lisse sur K ainsi qu'un résultat sur l'approximation faible d'ordre zéro pour des hypersurfaces cubiques de dimension supérieure sur K.Les deux autres chapitres forment la seconde partie de la thèse, où on travaille sur le corps des fractions K d'un anneau intègre local R, hensélien, excellent de dimension 2 dont le corps résiduel k est souvent supposé fini et où on emploie des outils plus algébriques. On étudie d'abord la ramification et la cyclicité des algèbres à division sur un tel corps K. On démontre en particulier que toute classe de Brauer d'ordre n premier à la caractéristique résiduelle sur K est d'indice divisant n^2 et que la cyclicité d'une classe de Brauer d'ordre premier peut être testée localement sur les corps complétés par rapport aux valuations discrètes de K. Ces résultats sont appliqués dans le dernier chapitre pour étudier l'arithmétique des formes quadratiques sur K. On montre que toute forme quadratique de rang \ge 9 sur K possède un zéro non trivial. Si K est le corps des fractions d'un anneau de séries formelles A[[t]] sur un anneau de valuation discrète complet A, on a prouvé le principe local-global pour toute forme quadratique de rang \ge 5 sur K. Pour K général on a établi le principe local-global pour les formes de rang 5. Le cas des formes de rang 6,7 ou 8 est ouvert. / This thesis is concerned with the study of some arithmetic properties of certain algebraic varieties which are ``simplest'' in some geometric sense and which are defined over fields of geometric type. It consists of three chapters. In the first chapter, which is independent of the other two, we consider the weak approximation property for a smooth projective rationally connecte d variety X defined over the function field K=k(C) of an algebraic curve C over a field k. Suppose that X admits a K-rational point. Using geometric methods we prove that X(K) is Zariski dense in X if k is a large field, and that under suitable hypotheses weak approximation with respect to a set of places of good reduction holds for X. When k is a finite field, we obtain weak approximation at any given place of good reduction for a smooth cubic surface over K as well as a zero-th order weak approximation result for higher dimensional cubic hypersurfaces over K.The second part of the thesis consists of the last two chapters, where we work over the fraction field K of a 2-dimensional, excellent, henselian local domain R whose residue field k is often assumed to be finite, and where we use more algebraic tools. We first study the ramification and the cyclicity of division algebras over such a field K. We show in particular that every Brauer class over K of order n, which is prime to the residue characteristic, has index dividing n^2, and that the cyclicity of a Brauer class of prime order can be tested locally over the completions of K with respect to discrete valuations. These results are used in the last chapter to study the arithmetic of quadratic forms over K. We prove that every quadratic form of rank \ge 9 over K has a nontrivial zero. When K is the fraction field of a power series ring A[[t]] over a complete discrete valuation ring A, we prove the local-global principle for quadratic forms of rank \ge 5 over K. For general K we prove the local-global principle for quadratic forms of rank 5. The local-global principle for quadratic forms of rank 6, 7 or 8 is still open in the general case.
7

Finite subgroups of the extended Morava stabilizer groups / Sous-groupes finis des groupes de stabilisateur étendus de Morava

Bujard, Cédric 04 June 2012 (has links)
L'objet de la thèse est la classification à conjugaison près des sous-groupes finis du groupe de stabilisateur (classique) de Morava S_n et du groupe de stabilisateur étendu G_n(u) associé à une loi de groupe formel F de hauteur n définie sur le corps F_p à p éléments. Une classification complète dans S_n est établie pour tout entier positif n et premier p. De plus, on montre que la classification dans le groupe étendu dépend aussi de F et son unité associée u dans l'anneau des entiers p-adiques. On établit un cadre théorique pour la classification dans G_n(u), on donne des conditions nécessaires et suffisantes sur n, p et u pour l'existence dans G_n(u) d'extensions de sous-groupes finis maximaux de S_n par le groupe de Galois de F_{p^n} sur F_p, et lorsque de telles extensions existent on dénombre leurs classes de conjugaisons. On illustre nos méthodes en fournissant une classification complète et explicite dans le cas n=2. / The problem addressed is the classification up to conjugation of the finite subgroups of the (classical) Morava stabilizer group S_n and the extended Morava stabilizer group G_n(u) associated to a formal group law F of height n over the field F_p of p elements. A complete classification in S_n is provided for any positive integer n and prime p. Furthermore, we show that the classification in the extended group also depends on F and its associated unit u in the ring of p-adic integers. We provide a theoretical framework for the classification in G_n(u), we give necessary and sufficient conditions on n, p and u for the existence in G_n(u) of extensions of maximal finite subgroups of S_n by the Galois group of F_{p^n} over F_p, and whenever such extension exist we enumerate their conjugacy classes. We illustrate our methods by providing a complete and explicit classification in the case n=2.

Page generated in 0.314 seconds