Spelling suggestions: "subject:"théorie duu corpo dde classes"" "subject:"théorie duu corpo dee classes""
1 |
Points de torsion des courbes elliptiques et équations diophantiennesBillerey, Nicolas 19 November 2009 (has links) (PDF)
Cette thèse est composée de deux parties indépendantes. Dans la première, on s'intéresse à la résolution de certaines équations diophantiennes par la méthode modulaire. On traite plus particulièrement le cas des équations de Fermat de type (5,5,p) ainsi que celui des équations de la forme F(x,y)=z^p où p est un nombre premier et F une cubique rationnelle. La deuxième partie est consacrée à l'arithmétique des courbes elliptiques. Dans le cas d'une courbe définie sur une extension finie de Q_2 ayant mauvaise réduction additive avec potentiellement bonne réduction, on s'intéresse à la détermination de son défaut de semi-stabilité. On énonce un résultat partiel valable pour toute extension finie de Q_2. Dans le cas des extensions quadratiques ramifiées de Q_2, on obtient un résultat complet. Par ailleurs, si E est une courbe elliptique définie sur un corps de nombres K, on s'intéresse, dans le dernier chapitre, à l'ensemble des nombres premiers p pour lesquels l'action du groupe de Galois absolu de K sur le sous-groupe des points de p-torsion de E est réductible. Lorsque cet ensemble est fini, on obtient un critère permettant en pratique de le déterminer explicitement.
|
2 |
Conjecture de Greenberg généralisée et capitulation dans les Zp-extensions d'un corps de nombresVauclair, David 08 December 2005 (has links) (PDF)
Le cadre général de cette thèse est celui de la théorie d'Iwasawa. Nous nous intéressons plus<br />particulièrement à la conjecture de Greenberg généralisée (multiple) (GG). Après avoir relié celle-ci à différents problèmes de capitulation pour certains groupes de cohomologie p-adiques en degré 2, nous proposons une version faible (GGf) de (GG) dont nous montrons la validité, pour tout corps de nombres F contenant une racine primitive p-ième de l'unité et un corps quadratique imaginaire dans lequel (p) se décompose, du moment que F vérifie la conjecture de Leopoldt. Les outils développés permettent de retrouver et de généraliser (notamment dans des Zp-extensions autre que la Zp-extension<br />cyclotomique) un certain nombre de résultats classiques en théorie d'Iwasawa.
|
3 |
Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves / Groupes adéliques universels pour les corps quadratiques imaginaires et les courbes elliptiquesAngelakis, Athanasios 02 September 2015 (has links)
Cette thèse traite de deux problèmes dont le lien n’est pas apparent (1) A` quoi ressemble l’abélianisé AK du groupe de Galois absolu d’un corps quadratique imaginaire K, comme groupe topologique? (2) A` quoi ressemble le groupe des points adéliques d’une courbe elliptique sur Q, comme groupe topologique? Pour la première question, la restriction au groupe de Galois abélianisé nous permet d’utiliser la théorie du corps de classes pour analyser AK . Les travaux précédents dans ce domaine, qui remontent à Kubota et Onabe, décrivent le dual de Pontryagin de AK en termes de familles in- finies d’invariants de Ulm à chaque premier p, très indirectement. Notre approche directe par théorie du corps de classes montre que AK con- tient un sous-groupe UK d’indice fini isomorphe au groupe des unités Oˆ* de la complétion profinie Oˆ de l’anneau des entiers de K, et décrit explicitement le groupe topologique UK , essentiellement indépendamment du corps quadratique imaginaire K. Plus précisément, pour tout corps quadratique imaginaire différent de Q(i) et Q(v-2),on a UK ∼= U = Zˆ2 × Y Z/nZ. (n=1) Le caractère exceptionnel de Q(v-2) n’apparaît pas dans les travaux de Kubota et Onabe, et leurs résultats doivent être corrigés sur ce point.Passer du sous-groupe universel UK à AK revient à un problème d’extension pour des groupes adéliques qu’il est possible de résoudre en passant à une extension de quotients convenables impliquant le quotient Zˆ-libre maximal UK/TK de UK . Par résoudre , nous entendons que, pour chaque K suffisamment petit pour permettre des calculs de groupe de classes explicites, nous obtenons un algorithme praticable décidant le comportement de cette extension. Si elle est totalement non-scindée, alors AK est isomorphe comme groupe topologique au groupe universel U . Réciproquement, si l’extension tensorisée par Zp se scinde pour un premier p impair, alors AK n’est pas isomorphe à U . Pour le premier 2, la situation est particulière, mais elle reste contrôlée grâce à l’abondance de résultats sur la 2-partie des groupes de classes de corps quadratiques.Nos expérimentations numériques ont permis de mieux comprendre la distribution des types d’isomorphismes de AK quand K varie, et nous conduisent à des conjectures telles que pour 100% des corps quadratiques imaginaires K de nombre de classes premier, AK est isomorphe au groupe universel U .Pour notre deuxième problème, qui apparaît implicitement dans [?, Section 9, Question 1] (dans le but de reconstruire le corps de nombres K à partir du groupe des points adéliques E(AK ) d’une courbe elliptique convenable sur K), nous pouvons appliquer les techniques usuelles pour les courbes elliptiques sur les corps de nombres, en suivant les mêmes étapes que pour déterminer la structure du groupe Oˆ* rencontré dans notre premier problème. Il s’avère que, dans le cas K = Q que nous traitons au Chapitre 4, le groupe des points adéliques de presque toutes les courbes elliptiques sur Q est isomorphe à un groupe universel E = R/Z × Zˆ × Y Z/nZ (n=1)de nature similaire au groupe U . Cette universalité du groupe des points adéliques des courbes elliptiques provient de la tendance qu’ont les représentations galoisiennes attachées (sur le groupe des points de torsion à valeurs dans Q) à être maximales. Pour K = Q, la représentation galoisienne est maximale si est seulement si la courbe E est une courbe de Serre, et Nathan Jones [?] a récemment démontré que presque toutes les courbes elliptiques sur Q sont de cette nature. En fait, l’universalité de E(AK ) suit d’hypothèses bien plus faibles, et il n’est pas facile de construire des familles de courbes elliptiques dont le groupe des points adéliques n’est pas universel. Nous donnons un tel exemple à la fin du Chapitre 4. / The present thesis focuses on two questions that are not obviously related. Namely,(1) What does the absolute abelian Galois group AK of an imaginary quadratic number field K look like, as a topological group?(2) What does the adelic point group of an elliptic curve over Q look like, as a topological group?For the first question, the focus on abelian Galois groups provides us with class field theory as a tool to analyze AK . The older work in this area, which goes back to Kubota and Onabe, provides a description of the Pontryagin dual of AK in terms of infinite families, at each prime p, of so called Ulm invariants and is very indirect. Our direct class field theoretic approach shows that AK contains a subgroup UK of finite index isomorphic to the unit group Oˆ∗ of the profinite completion Oˆ of the ring of integers of K, and provides a completely explicit description of the topological group UK that is almost independent of the imaginary quadratic field K. More precisely, for all imaginary quadratic number fields different from Q(i) and Q(√−2), we have UK ∼= U = Zˆ2 × Y Z/nZ. (n=1)The exceptional nature of Q(√−2) was missed by Kubota and Onabe, and their theorems need to be corrected in this respect.Passing from the ‘universal’ subgroup UK to AK amounts to a group extension problem for adelic groups that may be ‘solved’ by passing to a suitable quotient extension involving the maximal Zˆ-free quotientUK/TK of UK . By ‘solved’ we mean that for each K that is sufficiently small to allow explicit class group computations for K, we obtain a practical algorithm to compute the splitting behavior of the extension. In case the quotient extension is totally non-split, the conclusion is that AK is isomorphic as a topological group to the universal group U . Conversely, any splitting of the p-part of the quotient extension at an odd prime p leads to groups AK that are not isomorphic to U . For the prime 2, the situation is special, but our control of it is much greater as a result of the wealth of theorems on 2-parts of quadratic class groups.Based on numerical experimentation, we have gained a basic under- standing of the distribution of isomorphism types of AK for varying K, and this leads to challenging conjectures such as “100% of all imagi- nary quadratic fields of prime class number have AK isomorphic to the universal group U ”.In the case of our second question, which occurs implicitly in [?, Section 9, Question 1] with a view towards recovering a number field K from the adelic point group E(AK ) of a suitable elliptic curve over K, we can directly apply the standard tools for elliptic curves over number fields in a method that follows the lines of the determination of the structure of Oˆ∗ we encountered for our first question.It turns out that, for the case K = Q that is treated in Chapter 4, the adelic point group of ‘almost all’ elliptic curves over Q is isomorphic to a universal groupE = R/Z × Zˆ × Y Z/nZ (n=1)that is somewhat similar in nature to U . The reason for the universality of adelic point groups of elliptic curves lies in the tendency of elliptic curves to have Galois representations on their group of Q-valued torsion points that are very close to being maximal. For K = Q, maximality of the Galois representation of an elliptic curve E means that E is a so-called Serre-curve, and it has been proved recently by Nathan Jones [?] that ‘almost all’ elliptic curves over Q are of this nature. In fact, universality of E(AK ) requires much less than maximality of the Galois representation, and the result is that it actually requires some effort to construct families of elliptic curves with non-universal adelic point groups. We provide an example at the end of Chapter 4.
|
4 |
On the 16-rank of class groups of quadratic number fields / Sur le 16-rang des groupes des classes de corps de nombres quadratiquesMilovic, Djordjo 04 July 2016 (has links)
Nous démontrons deux nouveaux résultats de densité à propos du 16-rang des groupes des classes de corps de nombres quadratiques. Le premier des deux est que le groupe des classes de Q(sqrt{-p}) a un élément d'ordre 16 pour un quart des nombres premiers p qui sont de la forme a^2+c^4 avec c pair. Le deuxième est que le groupe des classes de Q(sqrt{-2p}) a un élément d'ordre 16 pour un huitième des nombres premiers p=-1 (mod 4). Ces résultats de densité sont intéressants pour plusieurs raisons. D'abord, ils sont les premiers résultats non triviaux de densité sur le 16-rang des groupes des classes dans une famille de corps de nombres quadratiques. Deuxièmement, ils prouvent une instance des conjectures de Cohen et Lenstra. Troisièmement, leurs preuves impliquent de nouvelles applications des cribles développés par Friedlander et Iwaniec. Quatrièmement, nous donnons une description explicite du sous-corps du corps de classes de Hilbert de degré 8 de Q(sqrt{-p}) lorsque p est un nombre premier de la forme a^2+c^4 avec c pair; l'absence d'une telle description explicite pour le sous-corps du corps de classes de Hilbert de degré 8 de Q(sqrt{d}) est le frein principal à l'amélioration des estimations de la densité des discriminants positifs d pour lesquels l'équation de Pell négative x^2-dy^2=-1 est résoluble. Dans le cas du deuxième résultat, nous donnons une description explicite d'un élément d'ordre 4 dans le groupe des classes de Q(sqrt{-2p}) et on calcule son symbole d'Artin dans le sous-corps du corps de classes de Hilbert de degré 4 de Q(sqrt{-2p}), généralisant ainsi un résultat de Leonard et Williams. Enfin, nous démontrons un très bon terme d'erreur pour une fonction de comptage des nombres premiers qui est liée au 16-rang du groupe des classes de Q(sqrt{-2p}), donnant ainsi des indications fortes contre une conjecture de Cohn et Lagarias que le 16-rang est contrôlé par un critère de type Chebotarev. / We prove two new density results about 16-ranks of class groups of quadratic number fields. The first of the two is that the class group of Q(sqrt{-p}) has an element of order 16 for one-fourth of prime numbers p that are of the form a^2+c^4 with c even. The second is that the class group of Q(sqrt{-2p}) has an element of order 16 for one-eighth of prime numbers p=-1 (mod 4). These density results are interesting for several reasons. First, they are the first non-trivial density results about the 16-rank of class groups in a family of quadratic number fields. Second, they prove an instance of the Cohen-Lenstra conjectures. Third, both of their proofs involve new applications of powerful sieving techniques developed by Friedlander and Iwaniec. Fourth, we give an explicit description of the 8-Hilbert class field of Q(sqrt{-p}) whenever p is a prime number of the form a^2+c^4 with c even; the lack of such an explicit description for the 8-Hilbert class field of Q(sqrt{d}) is the main obstacle to improving the estimates for the density of positive discriminants d for which the negative Pell equation x^2-dy^2=-1 is solvable. In case of the second result, we give an explicit description of an element of order 4 in the class group of Q(sqrt{-2p}) and we compute its Artin symbol in the 4-Hilbert class field of Q(sqrt{-2p}), thereby generalizing a result of Leonard and Williams. Finally, we prove a power-saving error term for a prime-counting function related to the 16-rank of the class group of Q(sqrt{-2p}), thereby giving strong evidence against a conjecture of Cohn and Lagarias that the 16-rank is governed by a Chebotarev-type criterion.
|
5 |
Différentes approches de la théorie l-adique du corps des classes. / Different approaches of l-afic class field theoryReglade, Stephanie 08 September 2014 (has links)
Neukirch a développé la théorie abstraite du corps des classes dans son livre ``Class Field Theory''. Nous montrons qu'il est possible de déduire la théorie l-adique de Jaulentdu travail de Neukirch. La preuve nécessite, dans les deux cas (le cas local et le cas global) de définir les applications degré, les G-modules, valuations convenables et de prouver l'axiome du corps des classes. } Puis nous montrons qu'en considérant le même objet local, mais cette fois-ci muni de la valuation logarithmique, et en remplaçant l'extension maximale non ramifiée du corps local considéré par la $\mathbb{Z}_{l-extension cyclotomique, la théorie de Neukirch s'applique également, permettant ainsi de définir un symbole local logarithmique et un symbole global.Nous sommes alors en mesure de définir le Frobenius logarithmique associé à une place $\mathfrak{p}$ logarithmiquement non ramifiée, ce qui conduit naturellement à une application d'Artin logarithmique, dont nous étudions le noyau et les propriétés. Cela nécessite au préalable de définir le conducteur logarithmique associé à une $\ell$-extension abélienne finie. Nous introduisons alors les sous-modules de congruences logarithmiques, pour lesquels nous définissons le conducteur logarithmique associé à une classe d'équivalence sur ces modules. Nous prouvons l'égalité entre le conducteur logarithmique global d'une $\ell$-extension et le conducteur de la classe de congruences qui lui est associé. / Neukirch developedabstract class field theoryin his famousbook ``Class Field Theory''. Weshow that it ispossible to derive Jaulent's $\ell$-adic class fieldfrom Neukirch's framework. Theproof requiresin bothcases (local case and global case) to define suitable degree maps, $G$-modules, valuations and to prove the class fieldaxiom. Then we study thelocal object endowed with the logarithmicvaluation introduced by Jaulent and wereplace here the maximal, abelian unramified pro-$\ell$-extension of our local field by the $ {\mathbb{Z}_{\ell}}$-cyclotomic one, and the usualvaluation by the logarithmic one. Weshow that Neukich'sabstract theory appliesin this context, and allows to definea logarithmic local symbol and a global one. This allows to define the logarithmic Frobenius, in the context of the logarithmic ramification, and the logarithmic Artin map. We study its propertiesand its kernel.This requires before to define the logarithmic conductor. Then we introduce logarithmic congruences sub-modules, and the conductor attached to the coset of sucha module. We prove that both conductors coincide.
|
6 |
Sous-groupes finis des groupes de stabilisateur étendus de MoravaBujard, Cédric 04 June 2012 (has links) (PDF)
L'objet de la thèse est la classification à conjugaison près des sous-groupes finis du groupe de stabilisateur (classique) de Morava S_n et du groupe de stabilisateur étendu G_n(u) associé à une loi de groupe formel F de hauteur n définie sur le corps F_p à p éléments. Une classification complète dans S_n est établie pour tout entier positif n et premier p. De plus, on montre que la classification dans le groupe étendu dépend aussi de F et son unité associée u dans l'anneau des entiers p-adiques. On établit un cadre théorique pour la classification dans G_n(u), on donne des conditions nécessaires et suffisantes sur n, p et u pour l'existence dans G_n(u) d'extensions de sous-groupes finis maximaux de S_n par le groupe de Galois de F_{p^n} sur F_p, et lorsque de telles extensions existent on dénombre leurs classes de conjugaisons. On illustre nos méthodes en fournissant une classification complète et explicite dans le cas n=2.
|
7 |
Finite subgroups of the extended Morava stabilizer groups / Sous-groupes finis des groupes de stabilisateur étendus de MoravaBujard, Cédric 04 June 2012 (has links)
L'objet de la thèse est la classification à conjugaison près des sous-groupes finis du groupe de stabilisateur (classique) de Morava S_n et du groupe de stabilisateur étendu G_n(u) associé à une loi de groupe formel F de hauteur n définie sur le corps F_p à p éléments. Une classification complète dans S_n est établie pour tout entier positif n et premier p. De plus, on montre que la classification dans le groupe étendu dépend aussi de F et son unité associée u dans l'anneau des entiers p-adiques. On établit un cadre théorique pour la classification dans G_n(u), on donne des conditions nécessaires et suffisantes sur n, p et u pour l'existence dans G_n(u) d'extensions de sous-groupes finis maximaux de S_n par le groupe de Galois de F_{p^n} sur F_p, et lorsque de telles extensions existent on dénombre leurs classes de conjugaisons. On illustre nos méthodes en fournissant une classification complète et explicite dans le cas n=2. / The problem addressed is the classification up to conjugation of the finite subgroups of the (classical) Morava stabilizer group S_n and the extended Morava stabilizer group G_n(u) associated to a formal group law F of height n over the field F_p of p elements. A complete classification in S_n is provided for any positive integer n and prime p. Furthermore, we show that the classification in the extended group also depends on F and its associated unit u in the ring of p-adic integers. We provide a theoretical framework for the classification in G_n(u), we give necessary and sufficient conditions on n, p and u for the existence in G_n(u) of extensions of maximal finite subgroups of S_n by the Galois group of F_{p^n} over F_p, and whenever such extension exist we enumerate their conjugacy classes. We illustrate our methods by providing a complete and explicit classification in the case n=2.
|
Page generated in 0.1279 seconds