Spelling suggestions: "subject:"comain specific language"" "subject:"cdomain specific language""
11 |
Contrôle de la propagation et de la recherche dans un solveur de contraintes / Controlling propagation and search within a constraint solverPrud'homme, Charles 28 February 2014 (has links)
La programmation par contraintes est souvent décrite, utopiquement, comme un paradigme déclaratif dans lequel l’utilisateur décrit son problème et le solveur le résout. Bien entendu, la réalité des solveurs de contraintes est plus complexe, et les besoins de personnalisation des techniques de modélisation et de résolution évoluent avec le degré d’expertise des utilisateurs. Cette thèse porte sur l’enrichissement de l’arsenal des techniques disponibles dans les solveurs de contraintes. D’une part, nous étudions la contribution d’un système d’explications à l’exploration de l’espace de recherche, dans le cadre spécifique d’une recherche locale. Deux heuristiques de voisinages génériques exploitant singulièrement les explications sont décrites. La première se base sur la difficulté de réparer une solution partiellement détruite, la seconde repose sur la nature non-optimale de la solution courante. Ces heuristiques mettent à jour la structure interne des problèmes traités pour construire des voisins de bonne qualité pour une recherche à voisinage large. Elles sont complémentaires d’autres heuristiques de voisinages génériques, avec lesquels elles peuvent être combinées efficacement. De plus, nous proposons de rendre le système d’explications paresseux afin d’en minimiser l’empreinte. D’autre part, nous effectuons un état des lieux des savoir-faire relatifs aux moteurs de propagation pour les solveurs de contraintes. Ces données sont exploitées opérationnellement à travers un langage dédié qui permet de personnaliser la propagation au sein d’un solveur, en fournissant des structures d’implémentation et en définissant des points de contrôle dans le solveur. Ce langage offre des concepts de haut niveau permettant à l’utilisateur d’ignorer les détails de mise en œuvre du solveur, tout en conservant un bon niveau de flexibilité et certaines garanties. Il permet l’expression de schémas de propagation spécifiques à la structure interne de chaque problème. La mise en œuvre et les expérimentations ont été effectués dans le solveur de contraintes Choco. Cette thèse a donné lieu à une nouvelle version de l’outil globalement plus efficace et nativement expliqué. / Constraint programming is often described, idealistically, as a declarative paradigm in which the user describes the problem and the solver solves it. Obviously, the reality of constraint solvers is more complex, and the needs in customization of modeling and solving techniques change with the level of expertise of users. This thesis focuses on enriching the arsenal of available techniques in constraint solvers. On the one hand, we study the contribution of an explanation system to the exploration of the search space in the specific context of a local search. Two generic neighborhood heuristics which exploit explanations singularly are described. The first one is based on the difficulty of repairing a partially destroyed solution, the second one is based on the non-optimal nature of the current solution. These heuristics discover the internal structure of the problems to build good neighbors for large neighborhood search. They are complementary to other generic neighborhood heuristics, with which they can be combined effectively. In addition, we propose to make the explanation system lazy in order to minimize its footprint. On the other hand, we undertake an inventory of know-how relative to propagation engines of constraint solvers. These data are used operationally through a domain specific language that allows users to customize the propagation schema, providing implementation structures and defining check points within the solver. This language offershigh-level concepts that allow the user to ignore the implementation details, while maintaining a good level of flexibility and some guarantees. It allows the expression of propagation schemas specific to the internal structure of each problem solved. Implementation and experiments were carried out in the Choco constraint solver, developed in this thesis. This has resulted in a new version of the overall effectiveness and natively explained tool.
|
12 |
Automated Synthesis of Model Comparison BenchmarksAddazi, Lorenzo January 2019 (has links)
Model-driven engineering promotes the migration from code-centric to model-based software development. Systems consist of model collections integrating different concerns and perspectives, while semi-automated model transformations generate executable code combining the information from these. Increasing the abstraction level to models required appropriate management technologies supporting the various software development activities. Among these, model comparison represents one of the most challenging tasks and plays an essential role in various modelling activities. Its hardness led researchers to propose a multitude of approaches adopting different approximation strategies and exploiting specific knowledge of the involved models. However, almost no support is provided for their evaluation against specific scenarios and modelling practices. This thesis presents Benji, a framework for the automated generation of model comparison benchmarks. Given a set of differences and an initial model, users generate models resulting from the application of the first on the latter. Differences consist of preconditions, actions and postconditions expressed using a dedicated specification language. The generator converts benchmark specifications to design-space exploration problems and produces the final solutions along with a model-based description of their differences with respect to the initial model. A set of representative use cases is used to evaluate the framework against its design principles, which resemble the essential properties expected from model comparison benchmark generators.
|
13 |
Using Haskell to Implement Syntactic Control of InterferenceWarren, Jared 11 June 2008 (has links)
Interference makes reasoning about imperative programs difficult but it can be controlled syntactically by a language's type system, such as Syntactic Control of Interference (SCI). Haskell is a purely-functional, statically-typed language with a rich type system including algebraic datatypes and type classes. It is popular as a defining language for definitional interpreters of domain-specific languages, making it an ideal candidate for implementation of definitional interpreters for SCI and Syntactic Control of Interference Revisited (SCIR), a variant that improves on SCI. Inference rules and denotational semantics functions are presented for PCF, IA, SCI, and SCIR. An extension to Haskell98 is used to define Haskell functions for those languages' semantics and to define type constructions to statically check their syntax. The results in applied programming language theory demonstrate the suitability and techniques of Haskell for definitional interpretation of languages with rich type systems. / Thesis (Master, Computing) -- Queen's University, 2008-06-10 21:23:33.291
|
14 |
Inter-temporal Privacy MetricsBerthold, Stefan January 2014 (has links)
Informational privacy of individuals has significantly gained importance after information technology has become widely deployed. Data, once digitalised, can be copied, distributed, and long-term stored at negligible costs. This has dramatic consequences for individuals that leave traces in the form of personal data whenever they interact with information technology, for instance, computers and phones; or even when information technology is recording the personal data of aware or unaware individuals. The right of individuals for informational privacy, in particular to control the flow and use of their personal data, is easily undermined by those controlling the information technology. The objective of this thesis is to study the measurement of informational privacy with a particular focus on scenarios where an individual discloses personal data to a second party which uses this data for re-identifying the individual within a set of other individuals. We contribute with privacy metrics for several instances of this scenario in the publications included in this thesis, most notably one which adds a time dimension to the scenario for modelling the effects of the time passed between data disclosure and usage. The result is a new framework for inter-temporal privacy metrics.
|
15 |
Modelado de sistemas colaborativosBibbó, Luis Mariano January 2009 (has links) (PDF)
La tesis propone un lenguaje específico de dominio (DSL) para modelar Sistemas Colaborativos (CSSL - Collaborative Software System Language). Este lenguaje fue diseñado como una extensión de UML usando el mecanismo de metamodelado y posee una sintaxis abstracta formalizada que permitirá entre otras cosas definir más de una sintaxis concreta a partir de ella, lo cual aumenta la legibilidad y flexibilidad del lenguaje. Finalmente se presenta una guía que facilita la construcción de Sistemas Colaborativos. Dentro del paradigma MDD (Model Driven Development) y utilizando el lenguaje CSSL se describe las etapas iniciales de un método para modelar los Sistemas Colaborativos.
|
16 |
Introducing Domain Specific Language for Modeling Scrum ProjectsZhang, Yanpeng, Zhou, Ce January 2016 (has links)
Context. A clear software process definition is important because it can help developers to share a common understanding and improve the development effectiveness. However, if the misconceptions or misunderstandings are introduced to the team during the process definition, it will bring numerous uncertain problems to the projects and reduce the productivity. Scrum is one of the most popular Agile development processes. It has been frequently used in software development. But the misunderstanding of usage of the Scrum method always leads to situations where teams cannot achieve the hyper-productivity even failure. Therefore, introducing a reasonable graphical language for describing the Scrum process may help learners to gain a correct and common understanding of the Scrum method. Objectives. In this study, we introduce a graphical Domain Specific Language for modeling the Scrum process and specific Scrum projects. Further, we evaluated the proposed language to figure out if and how this language can help developers learn Scrum method and understand the specific Scrum projects. For the first, we decide to extract the essential elements and their relative relationships of the Scrum process, and based on that, we define and specify the graphical language. After that, we evaluate the proposed graphical language to validate whether this language can be considered as useful to help developers to learn Scrum method and understand the specific Scrum projects. Methods. In order to define the graphical language, we studied and reviewed the literature to extract the essential elements and their relationships for describing the Scrum process. Based on that, we defined and specified the graphical DSL. With the aim of evaluating the proposed graphical language, we performed the experiment and survey method. This experiment was conducted in an educational environment. The subjects were selected from the undergraduate and master students. At the same time, we carried out a survey to capture the developers‘ opinions and suggestions towards the proposed language in order to validate its feasibility. Results. By studying the literature, we listed and specified the essential elements for describing the Scrum process. By executing the experiment, we evaluated the efficiency and effectiveness of learning Scrum in using the proposed language and the natural language. The result indicates that the graphical language is better than the natural language in training Scrum method and understanding specific Scrum projects. The result shows that the proposed language improved the understandability of the Scrum process and specific Scrum projects by more than 30%. We also performed a survey to investigate the potential use of the proposed graphical DSL in industry. The Survey results show that participants think the proposed graphical language can help them to better understand the Scrum method and specific Scrum projects. Moreover, we noticed that the developers who have less Scrum development experience show more interests in this proposed graphical language. Conclusions. To conclude, the obtained results of this study indicate that a graphical DSL can improve the understandability of Scrum method and specific Scrum projects. Especially in managing the specific Scrum project, subjects can easily understand and capture the detailed information of the project described in the proposed language. This study also specified the merits and demerits of using the graphical language and textual language in describing the Scrum process. From the survey, the result indicates that the proposed graphical language is able to help developers to understand Scrum method and specific Scrum projects in industry. Participants of this survey show positive opinion toward the proposed graphical language. However, it is still a rather long way to applying such a graphical language in Scrum projects development because companies have to consider the extra learning effort of the graphical DSL.
|
17 |
Towards Inter-temporal Privacy MetricsBerthold, Stefan January 2011 (has links)
Informational privacy of individuals has significantly gained importance after information technology has become widely deployed. Data, once digitalised, can be copied and distributed at negligible costs. This has dramatic consequences for individuals that leave traces in form of personal data whenever they interact with information technology. The right of individuals for informational privacy, in particular to control the flow and use of their personal data, is easily undermined by those controlling the information technology. The objective of this thesis is the measurement of informational privacy with a particular focus on scenarios where an individual discloses personal data to a second party, the data controller, which uses this data for re-identifying the individual within a set of others, the population. Several instances of this scenario are discussed in the appended papers, most notably one which adds a time dimension to the scenario for modelling the effects of the time passed between data disclosure and usage. This extended scenario leads to a new framework for inter-temporal privacy metrics. The common dilemma of all privacy metrics is their dependence on the information available to the data controller. The same information may or may not be available to the individual and, as a consequence, the individual may be misguided in his decisions due to his limited access to the data controller’s information when using privacy metrics. The goal of this thesis is thus not only the specification of new privacy metrics, but also the contribution of ideas for mitigating this dilemma. However a solution will rather be a combination of technological, economical and legal means than a purely technical solution.
|
18 |
Modul do prostředí Eclipse pro podporu JCL / Eclipse IDE plug-in for JCL supportDaněk, Tomáš January 2014 (has links)
In the thesis I am presenting a plugin in the integrated development environment Eclipse. Plugin is designed to support writing code in JCL programming language. In the first part of the thesis I am focusing on the mainframe platform from the IBM corporation on which the JCL language is used. I also focus on the z/OS operating system and it`s components required for adequate runtime environment for JCL language. In the next section I am discussing the Eclipse environment which is used as runtime platform for the plugin. As a base for the plugin is used an Xtext framework. The framework is specifically designed for development of custom domain specific languages.
|
19 |
Framework a DSL pro řízení přístupu založené na ansámblech / Framework and DSL for Ensemble-Based Access ControlMatějek, Jan January 2019 (has links)
Access control policies typically take the form of a set of static rules pertaining to individual entities under control. This can be impractical in real-world scenarios: authorization invariably depends on wider situational context which often tends to be highly dynamic. This leads to increasingly complex rules, which have to change over time to reflect the evolution of the controlled system. Ensemble-based architectures allow dynamic formation of goal-oriented groups in systems with large number of independent autonomous components. Because of the ad-hoc and situation-aware nature of group formation, ensembles offer a novel way of approaching access control. The goal of this work is to design a Scala framework and internal DSL for describing access control related situations via ensembles. In particular, the framework will define ensemble semantics suitable for evaluating the ensembles and establishing access control at runtime.
|
20 |
A Domain Specific Language Based Approach for Generating Deadlock-Free Parallel Load Scheduling Protocols for Distributed SystemsAdhikari, Pooja 11 May 2013 (has links)
In this dissertation, the concept of using domain specific language to develop errorree parallel asynchronous load scheduling protocols for distributed systems is studied. The motivation of this study is rooted in addressing the high cost of verifying parallel asynchronous load scheduling protocols. Asynchronous parallel applications are prone to subtle bugs such as deadlocks and race conditions due to the possibility of non-determinism. Due to this non-deterministic behavior, traditional testing methods are less effective at finding software faults. One approach that can eliminate these software bugs is to employ model checking techniques that can verify that non-determinism will not cause software faults in parallel programs. Unfortunately, model checking requires the development of a verification model of a program in a separate verification language which can be an error-prone procedure and may not properly represent the semantics of the original system. The model checking approach can provide true positive result if the semantics of an implementation code and a verification model is represented under a single framework such that the verification model closely represents the implementation and the automation of a verification process is natural. In this dissertation, a domain specific language based verification framework is developed to design parallel load scheduling protocols and automatically verify their behavioral properties through model checking. A specification language, LBDSL, is introduced that facilitates the development of parallel load scheduling protocols. The LBDSL verification framework uses model checking techniques to verify the asynchronous behavior of the protocol. It allows the same protocol specification to be used for verification and the code generation. The support to automatic verification during protocol development reduces the verification cost post development. The applicability of LBDSL verification framework is illustrated by performing case study on three different types of load scheduling protocols. The study shows that the LBDSL based verification approach removes the need of debugging for deadlocks and race bugs which has potential to significantly lower software development costs.
|
Page generated in 0.0928 seconds