• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 77
  • 16
  • 7
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 253
  • 64
  • 61
  • 57
  • 39
  • 31
  • 29
  • 28
  • 25
  • 24
  • 24
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Overcoming seed dormancy and development of In vitro propagation protocols in indigenous cucumis species for use as alternative crops in various industries

Maila, Mmatshelo Yvonne January 2015 (has links)
Thesis (Ph. D. (Plant Production)) -- University of Limpopo, 2015 / Wild watermelon (Cucumis africanus LF.) and wild cucumber (Cucumis myriocarpus Naude.) are known for their ethnomedicine, ethnopesticide, ethnonematicide and nutritional properties, along with nematode resistance. The two Cucumis species were successfully used as inter-generic seedling rootstocks for watermelon (Citrullus lanatus Thunb.) cultivars, where nematode-resistant genotypes are not available. Also, the two Cucumis species are hardy and resilient to inland South Africa conditions, where temperatures are predicted to increase by 6°C in the year 2030. Seeds in the Cucurbitaceae Family contain high concentration of cucurbitacins, which induce auto-allelopathy that inherently inhibits plant growth and germination. Poor germination and non-uniform stands as a result of seed dormancy are a major challenge in sexual propagation of wild Cucumis species for various potential industries. Generally, true-to-type, uniform and disease-free plants in plant production are asexually-generated through in vitro propagation techniques. This study was therefore, initiated to address seed dormancy and related challenges of sexual propagation in the two wild Cucumis species by determining whether: (1) seed dormancy in C. africanus and C. myiocarpus would be ameliorated to allow for in vitro sexual propagation to establish pathogen-free parent stock, (2) the testa in C. africanus and C. myiocarpus seeds would possess structures, which interfere with imbibition and movement of water to the endosperm, (3) all organs of C. africanus and C. myriocarpus would be suitable for in vitro propagation, (4) suitable potting medium for in vitro propagated plantlets of C. africanus and C. myriocarpus would be available for acclimatisation of plantlets and (5) in vitro-produced xxviii plantlets from nematode-resistant C. africanus and C. myriocarpus would retain their resistance to Meloidogyne incognita race 2 under greenhouse conditions. In vitro and ex vitro experiments were conducted to achieve the stated objectives, with treatments in the laboratory and the greenhouse being arranged in completely randomised and randomised complete block designs, respectively. Validity was primarily ensured through the use of factorial trials, while the reliability of data was ensured by using appropriate levels of statistical significance. Leaching alone in C. africanus improved germination, while in C. myriocarpus this treatment had no effect on germination. The optimum leaching time in leached-control seeds of C. africanus was achieved at 7.1 h, with a 25-day mean germination time (MGT) and 52% optimum germination percentage (GP). In the two Cucumis species, the combined effect of leaching seeds in running tapwater and physical scarification of seeds at the chalaza region escalated germination in both Cucumis species, suggesting that both chemical and physical seed dormancies were involved. In C. africanus, cucurbitacin B (C32H48O8) was deposited exogenously to the testa, whereas in C. myriocarpus cucurbitacin A [cucumin (C27H4009) and leptodermin (C27H3808)], was deposited endogenously to the testa. The optimum leaching time in leached-scarified (LS) seeds of C. africanus was achieved at 5.7 h, with at least 40-day MGT and 89% optimum GP. In contrast, in C. myriocarpus LS seeds had the optimum leaching time of 6.3 h, with at least 41 days MGT and 93% optimum GP. Field emission SEM confirmed that there were two “water-gaps”, one at the micropylar region (hilum end) and the other at chalaza region (abaxial end) of seeds in both Cucumis species. Five distinct testa layers in seeds of C. myriocarpus were observed, namely, (i) epidermis, (ii) hypodermis, (iii) sclerenchyma, (iv) aerenchyma xxix and (v) chlorenchyma. In contrast, C. africanus seeds did not have the hypodermis between the micropylar and chalaza regions, but was present around both regions, which may provide some explanation of sporadic germination in non-leached and non-scarified seeds in this Cucumis species. The most suitable plant propagules for in vitro mass propagation of the two Cucumis species were nodal and apical buds. The optimum PGRs for shoot regeneration using both propagules in C. africanus and C. myriocarpus were at 0.80 and 0.35 μM 6-benzyladeninepurine (BAP), respectively. In contrast, the largest number of roots was regenerated at 0.31 and 0.44 μM indole-3-butyric acid (IBA) for C. africanus and C. myriocarpus, respectively. In vitro-produced plantlets were successfully acclimatised to ex vitro conditions, with sand + compost potting medium being the most suitable growing medium for weaning both Cucumis species. The in vitro-produced plantlets retained their resistance to M. incognita race 2. In conclusion, seeds of C. africanus and C. myriocarpus are structurally and chemically different, with strong evidence of chemical and physical dormancies. Structurally, C. myriocarpus seeds consist of five layers, four lignified and one non-lignified, whereas those of C. africanus have four layers, three lignified and one non-lignified. Evidence suggested that in C. africanus seeds, allelochemicals were primarily deposited outside the testa, whereas in C. myriocarpus they were deposited within the testa. The identified seed dormancies could successfully be ameliorated through combining leaching and scarification in both Cucumis species. The developed in vitro propagation protocols accord the two Cucumis species the potential for use as future crops in the context of climate-smart agriculture and research. / Flemish Interuniversity Council (VLIR)
42

Seed germination and dormancy in south-western Australian fire ephemerals and burial as a factor influencing seed responsiveness to smoke

Baker, Katherine S January 2006 (has links)
[Truncated abstract] Fire ephemerals are pioneer species that germinate in large numbers after fire and generally live for between six months and four years. Seeds produced during the short life span of these plants persist in the soil seedbank until a subsequent fire. This study examined the dormancy characteristics and germination requirements of ten Australian fire ephemeral species from five families. Seeds of four species germinated at one or more incubation temperatures in the laboratory, indicating that a proportion of their seedlots were non-dormant at the time of testing. Austrostipa compressa and Austrostipa macalpinei (Poaceae) produced >80% germination at 10?C and Alyogyne hakeifolia and Alyogyne huegelii (Malvaceae) produced 30-40% and 35-50% germination respectively at 10 to 25°C. In each of the Alyogyne species approximately 50% of seeds were impermeable to water, but scarification did not enable germination of all viable seeds suggesting that seeds which did not germinate, may have possessed physiological dormancy as well as physical dormancy. Remaining species had water permeable seeds. ... Germination of both Alyogyne species declined after six months of winter burial but was enhanced by heat treatments after a further six months of summer burial. Actinotus leucocephalus and Tersonia cyathiflora seeds exhibited annual dormancy cycling over two years of burial. Dormancy was alleviated over summer, allowing seeds of both species to germinate in smoke water when seeds were exhumed in autumn, and reimposed over winter, suppressing germination in spring. In Actinotus leucocephalus these dormancy changes were induced in the laboratory by warm (≥15°C) and cold (5°C) temperatures, alleviating and re-imposing dormancy, respectively. Wetting and drying seeds stored at 37°C further accelerated the rate of dormancy release. This dormancy cycling would increase the likelihood of seeds germinating when moisture availability in south-western Australia is greatest for seedling survival. It also explains the variation in germination response to smoke water observed in many species. Thus under natural conditions dormancy levels of fire ephemerals were altered during soil storage which enabled them to respond to fire-related cues such as heat and smoke water, and germinate in autumn. This information will assist in the use of these species in land rehabilitation and ornamental horticulture, and in the conservation of rare or endangered fire ephemerals.
43

StCKP and potato tuber dormancy

Browning, Luke Wayne January 2018 (has links)
No description available.
44

The physiology of seed dormancy and germination in Avena fatua L.

Cairns, Andrew Lawrence Patrick 08 1900 (has links)
Thesis (PhD (Agric.) -- Stellenbosch University, 1984. / INTRODUCTION: The study of seed dormancy and germination has for centuries occupied the minds of agronomists, physiologists, brewers, bakers and, more recently, weed scientists. The agronomist requires that the seed that he sows will germinate rapidly and uniformly and produce a vigorous healthy seedling .. The physiologist is interested in the understanding of the basic processes involved at the molecular level, and the geneticist in the inheritance of the quiescent character of the seed. Brewers seek a seed that will retain its viability at least until the following crop is harvested but which will also, on imbibition, rapidly set in motion those processes that will convert starch into sugar. The baker is concerned with the baking quality of the seed and, as far as he is concerned~ the more dormant the seed the better, as this eliminates the problem of pre-harvest sprouting which is very detrimental to baking quality. The weed scientist seeks to encourage all weed seeds present in the soil to germinate simultaneously so as to enable him to destroy the weed population with one application of herbicide or a single cultivation.
45

Photocontrol of seed germination in arable land

Scopel, Ana L. 23 July 1993 (has links)
Graduation date: 1994
46

The ecology of <i>Brassica napus</i>

Seerey, Nicole J. 14 April 2010
Volunteer canola (<i>Brassica napus</i> L.) has become an abundant weed in western Canadian cropping systems. Modern canola cultivars are strong competitors and produce large seed yields, however seed shattering during harvest creates large volunteer seedbanks. The segregation of hybrid trait and changes in variability of traits may allow successive generations of volunteer <i>B. napus</i> weeds to display different levels of fitness and other traits. Three cultivars: 2 hybrid, and 1 open-pollinated at three consecutive generations: G1, the initial crop; G2, first generation of volunteers; and G3 the second generation of volunteers, were used to evaluate the competitive ability, fitness and population dynamics of volunteer canola when grown as a weed in wheat (<i>Triticum aestivum</i> L.). Traits including seed, biomass, and pod production, plant height, seed weight, dormancy, and competitive ability were measured. In all traits but height and seed weight, hybrid breakdown occurred, as the hybrid G1displayed greater mean values than the G2 generation. Hybrids commonly showed the highest mean values of various traits in the G1, lowest mean values in the G2. Hybrid G3 populations produced mean values not different from the G1 or G2 generations for many traits. The open-pollinated cultivar displayed mean values for all traits which did not vary across generations. Generational differences in <i>B. napus</i> seedlings resulted in differences in wheat yield losses. <i>B. napus</i> densities at maturity provided a more robust model of wheat yield loss, as there were differences in wheat yield losses due to the interaction of generation and cultivar of <i>B. napus</i>. Commercial seed generations were the most competitive and fit plants, while volunteer generations were less competitive, and not as fit.
47

Exploring how temperature affects dormancy induction and cold acclimation in hybrid poplar

Kalcsits, Lee Anthony 02 January 2008
Dormancy, cold hardiness and height growth were examined in four poplar clones exposed to four temperature conditions (13.5ºC/8.5ºC, 18.5ºC/3.5ºC, 18.5ºC/13.5ºC and 23.5ºC/8.5ºC day/night temperatures) under short photoperiod. The selected clones were WP-69 (Okanese)- early acclimation, Walker and Katepwa - intermediate acclimation, and Prairie Sky- late acclimation. Changes in physical water properties and mobility within the vascular tissue region, vascular transition region into the axillary bud and the upper axillary bud were assessed during endodormancy development using Magnetic Resonance Microimaging (MRMI). <p>In summary:<br>a) There were distinct differences between poplar clones during dormancy induction in response to temperature. For example, Katepwa, Walker and WP-69 clones became endodormant but Prairie Sky did not enter endodormancy. Endodormancy development and cold acclimation in WP-69 were less affected by temperature than Katepwa and Walker suggesting that genotypic variation exists in response to temperature change.<p>b) Growth cessation, not endodormancy, was a prerequisite for cold acclimation since cold hardiness increased in Prairie Sky in the absence of endodormancy. However, increases in endodormancy coincided with increase in cold hardiness in other clones.<p>c) Low night temperatures (18.5ºC/3.5ºC) delayed endodormancy development and cold acclimation in all clones compared to the warm night temperature treatment (18.5ºC /13.5ºC). Night temperature was negatively correlated with time to growth cessation, and cold hardiness and positively correlated with dormancy development. Changes in night temperature may affect time to growth cessation, subsequently altering timing of cold acclimation and endodormancy development since growth cessation appeared to be a prerequisite for both processes. <p>d) ADC (Apparent Diffusion Coefficient), an indicator of water mobility within living tissues, was negatively correlated with endodormancy induction. Specifically, the transition region of vascular tissue between the stem and the lower axillary bud showed the highest correlation with endodormancy development. By contrast, decreases in T1 relaxation times, an indicator of biophysical water properties, were inconsistent with changes in endodormancy levels in axillary buds. Thus, ADC appears to correspond more closely with endodormancy development than changes in T1 relaxation times. <p>It is apparent that temperature impacts dormancy development in hybrid poplar. Underlying changes in water appear to correspond with changes in endodormancy. Under future warming scenarios, genotypes such as WP 69 (Okanese) that are less sensitive to temperature and maintain a consistent, endodormancy induction pattern, may be better fit to changing climates.
48

Exploring how temperature affects dormancy induction and cold acclimation in hybrid poplar

Kalcsits, Lee Anthony 02 January 2008 (has links)
Dormancy, cold hardiness and height growth were examined in four poplar clones exposed to four temperature conditions (13.5ºC/8.5ºC, 18.5ºC/3.5ºC, 18.5ºC/13.5ºC and 23.5ºC/8.5ºC day/night temperatures) under short photoperiod. The selected clones were WP-69 (Okanese)- early acclimation, Walker and Katepwa - intermediate acclimation, and Prairie Sky- late acclimation. Changes in physical water properties and mobility within the vascular tissue region, vascular transition region into the axillary bud and the upper axillary bud were assessed during endodormancy development using Magnetic Resonance Microimaging (MRMI). <p>In summary:<br>a) There were distinct differences between poplar clones during dormancy induction in response to temperature. For example, Katepwa, Walker and WP-69 clones became endodormant but Prairie Sky did not enter endodormancy. Endodormancy development and cold acclimation in WP-69 were less affected by temperature than Katepwa and Walker suggesting that genotypic variation exists in response to temperature change.<p>b) Growth cessation, not endodormancy, was a prerequisite for cold acclimation since cold hardiness increased in Prairie Sky in the absence of endodormancy. However, increases in endodormancy coincided with increase in cold hardiness in other clones.<p>c) Low night temperatures (18.5ºC/3.5ºC) delayed endodormancy development and cold acclimation in all clones compared to the warm night temperature treatment (18.5ºC /13.5ºC). Night temperature was negatively correlated with time to growth cessation, and cold hardiness and positively correlated with dormancy development. Changes in night temperature may affect time to growth cessation, subsequently altering timing of cold acclimation and endodormancy development since growth cessation appeared to be a prerequisite for both processes. <p>d) ADC (Apparent Diffusion Coefficient), an indicator of water mobility within living tissues, was negatively correlated with endodormancy induction. Specifically, the transition region of vascular tissue between the stem and the lower axillary bud showed the highest correlation with endodormancy development. By contrast, decreases in T1 relaxation times, an indicator of biophysical water properties, were inconsistent with changes in endodormancy levels in axillary buds. Thus, ADC appears to correspond more closely with endodormancy development than changes in T1 relaxation times. <p>It is apparent that temperature impacts dormancy development in hybrid poplar. Underlying changes in water appear to correspond with changes in endodormancy. Under future warming scenarios, genotypes such as WP 69 (Okanese) that are less sensitive to temperature and maintain a consistent, endodormancy induction pattern, may be better fit to changing climates.
49

The ecology of <i>Brassica napus</i>

Seerey, Nicole J. 14 April 2010 (has links)
Volunteer canola (<i>Brassica napus</i> L.) has become an abundant weed in western Canadian cropping systems. Modern canola cultivars are strong competitors and produce large seed yields, however seed shattering during harvest creates large volunteer seedbanks. The segregation of hybrid trait and changes in variability of traits may allow successive generations of volunteer <i>B. napus</i> weeds to display different levels of fitness and other traits. Three cultivars: 2 hybrid, and 1 open-pollinated at three consecutive generations: G1, the initial crop; G2, first generation of volunteers; and G3 the second generation of volunteers, were used to evaluate the competitive ability, fitness and population dynamics of volunteer canola when grown as a weed in wheat (<i>Triticum aestivum</i> L.). Traits including seed, biomass, and pod production, plant height, seed weight, dormancy, and competitive ability were measured. In all traits but height and seed weight, hybrid breakdown occurred, as the hybrid G1displayed greater mean values than the G2 generation. Hybrids commonly showed the highest mean values of various traits in the G1, lowest mean values in the G2. Hybrid G3 populations produced mean values not different from the G1 or G2 generations for many traits. The open-pollinated cultivar displayed mean values for all traits which did not vary across generations. Generational differences in <i>B. napus</i> seedlings resulted in differences in wheat yield losses. <i>B. napus</i> densities at maturity provided a more robust model of wheat yield loss, as there were differences in wheat yield losses due to the interaction of generation and cultivar of <i>B. napus</i>. Commercial seed generations were the most competitive and fit plants, while volunteer generations were less competitive, and not as fit.
50

PsRBR1 encodes a pea retinoblastoma-related protein that is phosphorylated in axillary buds during dormancy-to-growth transition

Shimizu-Sato, Sae, Ike, Yoko, Mori, Hitoshi, 森, 仁志 01 1900 (has links)
Open Access Article

Page generated in 0.0264 seconds