Spelling suggestions: "subject:"double precision"" "subject:"bouble precision""
1 |
Dvigubo tikslumo slankaus kablelio daugybos realizavimas ir tyrimas / Double precision floating point multiplication an researchLešinskytė, Vaida 02 September 2011 (has links)
Darbe analizuojamos slankaus kablelio daugybos apskaičiavimo problemos. Pirmame darbo skyriuje analizuojamas slankaus kablelio vertimas iš dešimtainės sistemos į dvejetainę sistemą ir atvirkščiai. Tai reikalinga atlikti tam, kad išryškėtų nagrinėjamos problemos aktualumas. Jau verčiant dešimtainį didelio tikslumo skaičių į dvejetainį ir atgal į dešimtainį, nukenčia jo tikslumas, o dar labiau tai išryškėja vykdant veiksmus. Taip pat pirmame skyriuje paskutiniame poskyryje pateikiau keletą istorinių katastrofų faktų, kurie kilo būtent dėl slankiojo kablelio tikslumo problemų. Antrame darbo skyriuje analizuojamos aparatūrinės ir programinės įrangos problemos, kylančios realizuojant slankiojo kablelio daugybą. Šiame skyriuje gvildenta aparatūrinės įrangos įtaka algoritmų spartai, taip pat programinės įrangos įtaka gautam rezultato tikslumui ir apskaičiavimo spartai. Šiame skyriuje taip pat aprašyti ir keli slankiojo kablelio realizacijos algoritmai. Trečiame skyriuje pateikti algoritmo realizacijos reikalavimai, aprašytos pagrindinės problemos, su kuriomis buvo susidurta vykdant algoritmo realizaciją. Apibendrinti pateikiami ir rezultatai. Darbo gale pateikiamos darbo išvados, o prieduose pateikta algoritmo realizacija – programinio kodo fragmentai ir jų komentarai. / The paper analyzes the calculation of floating-point multiplication problems. The first chapter analyzes the translation of the floating-point decimal system to binary system and vice versa. It is necessary to make certain that the issue is clearly brought problem. High-precision decimal numbers translating into binary and back to decimal numbers. Even after these actions we have a loss of accuracy, and even more so come on in action. It is also the first chapter of the last section I presented some of the historical catastrophe of the facts that have arisen precisely because of the floating point precision problems. The second chapter analyzes the hardware and software problems for the realization of floating-point multiplication. This chapter examined the influence of algorithms hardware speed, as well as a software power and accuracy of the results obtained in calculating the rates. It also includes a description and a few floating-point realization algorithms. The third section of the Algorithm Implementation Requirements, described the main problems encountered in the realization of the algorithm. And summarize the results. Work at the end of the conclusions and annexes of the algorithm implementation - programming code snippets and comments.
|
2 |
Numerical Methods in Reaction Rate TheoryFrankcombe, Terry James Unknown Date (has links)
Numerical methods are often required to solve chemical problems, either to verify theoretical models or to access information that is not readily available experimentally. This thesis deals with both situations, though in differing levels of detail. A major component of this thesis is devoted to developing new methods to determine a full eigendecomposition of the matrices derived from "low temperature" unimolecular master equations. When transient behaviour is of interest achieving relative accuracy for more than just the eigenvector corresponding to the smallest eigenvalue is of central importance. Three new methods are presented. The first is based on a weighted implementation of subspace projection methods, in this case explored for the well-known Arnoldi method. This weighted inner product subspace projection methodology is demonstrated to
|
3 |
Numerical Methods in Reaction Rate TheoryFrankcombe, Terry James Unknown Date (has links)
Numerical methods are often required to solve chemical problems, either to verify theoretical models or to access information that is not readily available experimentally. This thesis deals with both situations, though in differing levels of detail. A major component of this thesis is devoted to developing new methods to determine a full eigendecomposition of the matrices derived from "low temperature" unimolecular master equations. When transient behaviour is of interest achieving relative accuracy for more than just the eigenvector corresponding to the smallest eigenvalue is of central importance. Three new methods are presented. The first is based on a weighted implementation of subspace projection methods, in this case explored for the well-known Arnoldi method. This weighted inner product subspace projection methodology is demonstrated to
|
4 |
Numerical Methods in Reaction Rate TheoryFrankcombe, Terry James Unknown Date (has links)
Numerical methods are often required to solve chemical problems, either to verify theoretical models or to access information that is not readily available experimentally. This thesis deals with both situations, though in differing levels of detail. A major component of this thesis is devoted to developing new methods to determine a full eigendecomposition of the matrices derived from "low temperature" unimolecular master equations. When transient behaviour is of interest achieving relative accuracy for more than just the eigenvector corresponding to the smallest eigenvalue is of central importance. Three new methods are presented. The first is based on a weighted implementation of subspace projection methods, in this case explored for the well-known Arnoldi method. This weighted inner product subspace projection methodology is demonstrated to
|
5 |
Numerical Methods in Reaction Rate TheoryFrankcombe, Terry James Unknown Date (has links)
Numerical methods are often required to solve chemical problems, either to verify theoretical models or to access information that is not readily available experimentally. This thesis deals with both situations, though in differing levels of detail. A major component of this thesis is devoted to developing new methods to determine a full eigendecomposition of the matrices derived from "low temperature" unimolecular master equations. When transient behaviour is of interest achieving relative accuracy for more than just the eigenvector corresponding to the smallest eigenvalue is of central importance. Three new methods are presented. The first is based on a weighted implementation of subspace projection methods, in this case explored for the well-known Arnoldi method. This weighted inner product subspace projection methodology is demonstrated to
|
Page generated in 0.0758 seconds