• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le canal Nav1.9, un acteur de la douleur inflammatoire régulé par le cholestérol : mécanisme d'action et perspectives thérapeutiques / Contribution of Nav1.9 to inflammatory pain and its regulation by cholesterol

Amsalem, Muriel 22 May 2014 (has links)
La prise en charge de la douleur est un enjeu médical majeur car il existe toujours des douleurs réfractaires aux traitements antalgiques actuels. La détection de la douleur est assurée par les neurones nociceptifs dont l'excitabilité est majoritairement contrôlée par les canaux sodiques dépendants du potentiel (Nav). Parmi eux, le canal Nav1.9 se distingue par son expression restreinte dans les nocicepteurs et par ses caractéristiques électrophysiologiques qui lui confèrent un rôle particulier dans l'électrogenèse de ces neurones. Au cours de ce travail de thèse nous avons caractérisé le rôle du canal Nav1.9 dans trois modèles de douleurs inflammatoires : aigue, persistant et chronique. Nous avons mis en oeuvre un ensemble de techniques d'analyses comportementales, moléculaires et électrophysiologiques, qui nous ont permis de montrer le rôle du canal Nav1.9 dans ces trois modèles de douleur et de révéler plusieurs mécanismes de régulation potentiels.Par la suite, nous nous sommes attachés à décortiquer l'un de ces mécanismes. Nous avons montré que le canal Nav1.9 est présent dans des microdomaines membranaires riches en cholestérol. Nous avons mis en évidence que l'inflammation diminuait la quantité de cholestérol dans les tissus. Ce mécanisme est à l'origine de douleurs dues à l'activation des canaux Nav1.9 et à leur relocalisation en dehors des radeaux lipidiques. Enfin nos expériences montrent que l'application topique de cholestérol peut réduire les douleurs inflammatoires, ouvrant de nouvelles perspectives thérapeutiques. / In mammals, perception of pain is initiated by signaling the occurrence of noxious stimuli through nociceptive neurons located in peripheral sensory ganglia. Nociceptive neurons play a pivotal role in pain perception as they transmit painful information to the central nervous system (CNS). They are largely responsible for the modifications of pain sensation caused by a lesion/inflammation or during the course of chronic diseases like rheumatoid arthritis. Unravelling the precise mechanism of ion channel activation during such pathophysiological conditions is one of the most challenging issues to design new therapeutic pain killer strategies.In this PhD thesis work, we will focus on one particular and promising sodium channel, named Nav1.9. We characterized Nav1.9 channel function in three inflammatory pain models: acute, persistent and chronic, using behavioural, molecular and electrophysiological analysis technics. This work allowed us to point out different putative mechanisms of regulation of this channel.We further decipher the regulation of Nav1.9 by cholesterol lipid in membrane microdomains. We showed that Nav1.9 channel is present in rafts specialized membrane microdomains enriched in cholesterol. We demonstrated that inflammation triggers a decrease in cholesterol level in inflamed territories and that cholesterol deletion induces mechanical allodynia in animals. In addition, we demonstrated that this pain was due to Nav1.9 channel activation and relocalization of this channel out of lipid rafts. Finally our experiments reported that exogenous cholesterol application reduces inflammatory pain. All these results provide a new insight in therapeutic perspectives.
2

Le récepteur métabotropique du glutamate 4 : une cible thérapeutique potentielle pour les douleurs chroniques? / The metabotropic glutamate receptor type 4 : a potential therapeutic target for chronic pain?

Vilar, Bruno 27 June 2012 (has links)
Les douleurs chroniques et notamment les douleurs neuropathiques sont particulièrement difficiles à traiter par les solutions thérapeutiques actuellement disponibles. Par conséquent, il existe un besoin crucial de découvrir et d'exploiter de nouveaux concepts d'antalgiques afin de traiter ce type de douleurs. Parmi les différentes pistes possibles, le système glutamatergique semble particulièrement intéressant puisque le glutamate est le principal neurotransmetteur propageant l'information douloureuse. Notre hypothèse est que l'activation du récepteur mGlu4 spinal inhiberait la neurotransmission glutamatergique et réduirait donc l'excès de douleur observé lors de douleurs chroniques. Grâce notamment au développement du premier agoniste orthostérique sélectif de mGlu4, nous avons mis en évidence que le récepteur mGlu4 n'altère pas la perception de la douleur aiguë mais qu'il influe, au contraire, sur l'aspect pathologique de la douleur en inhibant l'allodynie et l'hyperalgie mécanique ou thermique présentes lors de douleurs chroniques. Nous montrons que la modulation de l'hypersensibilité par mGlu4 semble provenir de sa capacité à inhiber la transmission glutamatergique via un couplage négatif avec les canaux calciques de type N au niveau de la couche II de la moelle épinière et plus particulièrement au niveau des fibres exprimant le transporteur vésiculaire VGLUT3. L'ensemble de nos résultats permettent de valider le récepteur mGlu4 spinal comme une cible thérapeutique potentielle pour le traitement des douleurs chroniques. En effet, les agonistes de mGlu4 pourraient être des antalgiques puissants et sélectifs des douleurs pathologiques. / Chronic pain and in particular neuropathic pain are particularly difficult to treat by therapeutic options currently available. Therefore, it is a crucial to develop new concepts of analgesics to treat this type of pain. Among the various possibilities, targeting the glutamatergic system seems to be particularly interesting since glutamate is the main neurotransmitter propagating the pain information. Our hypothesis is that the activation of spinal mGlu4 receptor would inhibit the spinal glutamatergic neurotransmission and would thus reduce the excess of pain observed in chronic pain.Thanks to the development of the first orthosteric agonist selective for mGlu4 and the use of transgenic animals, we demonstrated that mGlu4 receptor does not alter the perception of acute pain but that it does affect the pathological aspect of pain by inhibiting the allodynia and the hyperalgesia (mechanical and thermal) usually observed in chronic pain. We show that the mGlu4 modulation of the hypersensitivity seems to result from the ability of the receptor to inhibit the glutamatergic transmission through a negative coupling with N-type calcium channels in the lamina II of the spinal cord and especially at the level of fibers expressing the vesicular transporter VGLUT3. Taken together, our results validate spinal mGlu4 as a potential therapeutic target for the treatment of chronic pain. Indeed, mGlu4 agonists could be potent and selective painkillers of pathological pain.
3

Influence de l'inflammation sur le métabolisme catalysé par les cytochromes P450 chez le rat : approches in vitro et implications sur la pharmacocinétique d'agonistes delta

Projean, Denis January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
4

Développement de nanomédicaments innovants pour vaincre la douleur : une alternative à la morphine / A new painkiller nanomedicine to by-pass the blood-brain-barrier and the use of morphine

Feng, Jiao 14 December 2018 (has links)
Les neuropeptides endogènes chez l’homme, tels que les enképhalines et endomorphines, ont un potentiel thérapeutique considérable dans le traitement de la douleur. Ils agissent en activant les récepteurs opioïdes qui sont très largement distribués dans le système nerveux central ainsi que dans plusieurs tissus périphériques. Ces neuropeptides présentent, cependant, un certain nombre d’inconvénients qui limitent de manière importante leur efficacité thérapeutique. Tout d’abord, en raison de leur hydrophilie, ils ne passent pas la barrière sang/système nerveux, ce qui limite leur accès aux récepteurs opioïdes. De plus, ils présentent un temps de demi-vie plasmatique relativement court du fait d’une métabolisation rapide. Enfin, pour être efficaces, ces neuropeptides devraient résister à la protéolyse dans le système circulatoire et être suffisamment hydrophobes pour traverser ces barrières hémato-nerveuses.Le but de la thèse a consisté à créer de nouveaux nanomédicaments à base d’endorphines pour vectoriser et combattre la douleur de manière efficace.. Dans ce but, a été établi une liaison chimique covalente, enzymatiquement clivable (ester ou amide), entre le squalène (SQ, un lipide naturel et biocompatible) et le neuropeptide. Ce couplage donne lieu à des prodrogues qui ont la capacité de s'auto-assembler en nanoparticules (NPs) dans l'eau sans l’aide d'un agent tensio-actif. D’une manière générale, cette technologie présente de nombreux avantages tels qu’un taux de charge élevé en principe actif, une protection efficace de celui-ci vis-à-vis de la métabolisation et l’absence de phénomène de « burst release ».Durant ce travail de thèse, nous avons pu montrer pour la première fois que les Leu-enképhalines (LENK) pouvaient devenir efficaces pharmacologiquement une fois couplées au squalène, via une liaison amide (Am), ou via un bras espaceur, tel que le dioxycarbonyl (Diox), ou le diglycolate (Dig). Les prodrogues résultant de ce couplage ont toutes montré des propriétés d’auto-assemblage en milieu aqueux. Cette nanoformulation à base de squalène a permis, d’une part de protéger la LENK de la métabolisation rapide dans le plasma et d’autre part, de lui conférer un effet anti-hyperalgésique significatif dans un modèle de douleur inflammatoire induite chez le rat par la carragénine (test de Hargreaves). Il est important de souligner que cet effet anti-hyperalgésique a duré 3 fois plus longtemps qu’avec la morphine. Un prétraitement avec un antagoniste des récepteurs opioїdes imperméable à la BHE, comme la méthylnaloxone a complètement antagonisé l’effet anti-hyperalgésique des nanoparticules de LENK-SQ, démontrant ainsi que celles-ci agissent via les récepteurs opioïdes périphériques. De plus, l’étude de biodistribution de NPs LENK-SQ fluorescentes a montré une forte accumulation des celles-ci au niveau de la patte œdémateuse, mais aussi dans le foie, la rate et les poumons alors qu’aucun signal n’a pu être détecté au niveau cérébral, ce qui confirme bien l’effet périphérique de ces nanoparticules. Enfin, des études toxicologiques ont montré que malgré l’accumulation des NPs dans le foie, les taux d’aspartate transaminase (AST) et alanine transaminase (ALT) n’ont pas augmenté garantissant ainsi l’innocuité des NPs LENK-SQ après leur injection i.v. Cette étude représente une approche innovante et prometteuse permettant une distribution ciblée du neuropeptide endogène LENK dans les tissus œdémateux pour soulager efficacement la douleur inflammatoire. / Enkephalin is an endogenous pentapeptide producing potent analgesia by activating opioid receptors located on central and peripheral neuronal cell membranes. However, its clinical use has historically been limited due to pharmacokinetic issues, including restricted plasma stability and blood brain barrier impermeability. The aim of this project is to create a new enkephalin-based nanomedicine targeting pain, using biocompatible and biodegradable materials for drug delivery and targeting purposes, such as squalene (squalenoylation nanotechnology). This nanotechnology presents a new concept with numerous advantages in comparison with the conventional nanocarriers, such as high drug loading and absence of “burst release”. Here, we show for the first time, that the rapidly metabolized Leu-enkephalin (LENK) neuropeptide may become pharmacologically efficient owing to its simple conjugation with the squalene (SQ) using three different chemical linkers, i.e., dioxycarbonyl (Diox), diglycolate (Dig), or amide bond (Am). The resulting prodrugs were able to self-assemble in nanoparticles in aqueous media. This new squalene-based nanoformulation prevented rapid plasma degradation of LENK and conferred to the released neuropeptide a significant anti-hyperalgesic effect in a carrageenan-induced paw edema model in rats (Hargreaves test). It should be stressed that this effect lasted 3 times longer than morphine. Pretreatment with brain impermeant opioid receptor antagonist naloxone methiodide (Nal-M) reversed the nanoparticles induced anti-hyperalgesia, indicating that LENK-SQ NPs acted through peripherally located opioid receptors. Moreover, the biodistribution of DiD-fluorescently labeled LENK-SQ NPs showed a strong accumulation of the fluorescence within the inflamed paw as well as in the liver, spleen, and lung, while no signal could be detected in the brain, confirming the peripheral effect of LENK-SQ NPs. Toxicological studies showed that despite nanoparticles accumulation in the liver, the levels of aspartate transaminase (AST) and alanine transaminase (ALT) were not increased after i.v. injection of LENK-SQ NPs, highlighting thus their safety. This study represents a novel drug targeting approach, allowing the specific delivery of LENK neuropeptide into inflamed tissues for pain alleviation.
5

Protéine kinase C γ et hypersensibilité mécanique trigéminale chez le rat / Protein kinase C γ and trigeminal mechanical hypersensitivity in rats

Pham Dang, Nathalie 19 December 2014 (has links)
Les syndromes douloureux chroniques, inflammatoires ou neuropathiques, se caractérisent par une hypersensiblitité douloureuse, sous forme de douleurs spontanées et d’allodynie et d’hyperalgésie. L’isoforme γ de la protein kinase C (PKCγ), concentrée dans un type spécifique d’interneurones de la couche II interne (IIi) de la corne dorsale de la moelle ou du sous-noyau caudal du trijumeau (Sp5C) est impliqué dans mécanismes centraux de l’allodynie mécanique, une condition dans laquelle le toucher provoque une douleur. Nous avons utilisé des techniques comportementales et immunohistochimiques dans le système trigéminal.Le rôle de la PKCγ dans le développement de l’allodynie mécanique est bien établi après lésion nerveuse périphérique. Par contre, il l’est beaucoup moins dans l’allodynie d’origine inflammatoire. Nous avons testé l’hypothèse que l’allodynie mécanique persistante à la suite d’une inflammation périphérique provoquée par l’adjuvent complet de Freund (‘complete Freund’s adjuvant’ ou CFA) est bien due à une activation de la PKCγ. L’injection sous-cutanée de CFA au niveau de la zone d’insertion des vibrisses induit une allodynie persistante spécifiquement statique. L’immunomarquage phopho-ERK1/2 montre que l’expression de cette allodynie s’accompagne d’une activation d’interneurones des couches I-IIe et IIi-IIIe, dont des interneurones PKCγ de la couche IIi. Cette allodynie statique est supprimée par l’application intracisternale de l’antagoniste PKCγ, KIG31-1, avant l’injection de CFA, mais pas 3 jours après l’injection de CFA. Ainsi, comme pour l’allodynie mécanique neuropathique, l’activation de la PKCγ est nécessaire au développement de l’allodynie mécanique inflammatoire.Nous avons aussi examiné si l’activation de la PKCγ est suffisante pour le développement de l’allodynie mécanique. L’injection intracisternale de phorbol ester, 12,13-dibutyrate (PDBu), un activateur de la PKCγ, induit simultanément une allodynie mécanique statique et dynamique de la face. L’immunoréactivité phospho-ERK1/2 révèle que l’expression de ces deux allodynies mécaniques s’accompagne de la même activation d’interneurones des couches I-IIe et IIi-IIIe, dont des interneurones PKCγ de la couche IIi . Les effets de l’application de PDBu sont bloqués par l’application simultanée de KIG31-1.L’activation de la PKCγ seule est suffisante pour que se développe une allodynie mécanique, à la fois statique et dynamique. On sait que les interneurones PKCγ de la couche IIi sont directement activés par des afférences myélinisées mécaniques non nociceptives. Le niveau d’activation de la PKCγ contrôlerait la transmission de cette information vers les neurones de projection de la couche I, et donc la transformation du toucher en douleur. / Inflammatory and neuropathic chronic pain syndromes are characterized by pain hypersensitivy, manifest as spontaneous pain, allodynia and hyperalgesia. The γ isoform of protein kinase C (PKCγ), which is concentrated in a specific class of interneurons within inner lamina II (IIi) of the spinal (SDH) and medullary (MDH) dorsal horns, has been implicated in the central mechanisms underlying mechanical allodynia, a condition wherein touch produces pain. We used behavioral and immunohistochemical techniques in the trigeminal system.Whereas there is clear evidence for the involvement of PKCγ in neuropathic mechanical allodynia, that for the involvement of PKCγ in inflammatory mechanical allodynia is still controversial. We investigated the involvement of PKCγ into the persistent mechanical allodynia induced by complete Freund’s adjuvant (CFA) inflammation. Subcutaneous injection of CFA into the vibrissa pad of rats induced a persistent selectively static mechanical allodynia. Monitoring neuronal activity within medullary dorsal horn (MDH) with phospho-ERK1/2 immunoreactivity showed that activation of both laminae I-IIo and IIi-IIIo neurons, including lamina IIi PKCγ-expressing interneurons, was associated with the expression of static mechanical allodynia. Intracisternal injection of the selective PKCγ antagonist, KIG31-1, prevented CFA-induced static mechanical allodynia only when it was injected before, but not 3 days after, CFA injection. These results show that, as for neuropathic mechanical allodynias, PKCγ activation is necessary for inflammatory mechanical allodynia.We also examined whether PKCγ activation in naïve animals is sufficient for the establishment of mechanical allodynia. Intracisternal injection of the phorbol ester, 12,13-dibutyrate (PDBu), concomitantly induced static and dynamic facial mechanical allodynias Monitoring neuronal activity within MDH with phospho-ERK1/2 immunoreactivity revealed that the same activation of both laminae I-IIo and IIi-IIIo neurons, including lamina IIi PKCγ-expressing interneurons, was associated with the manifestation of both mechanical allodynias. PDBu-induced mechanical allodynias and associated neuronal activations were all prevented by intracisternal KIG31-1.Our findings reveal that PKCγ activation is sufficient for the development of static and dynamic mechanical allodynias. Lamina IIi PKCγ interneurons have been shown to be directly activated by low-threshold mechanical inputs carried by myelinated afferents. The level of PKCγ activation might thus gate the transmission of innocuous mechanical inputs to lamina I, nociceptive output neurons, thus turning touch into pain.
6

Mise en évidence du rôle physiologique de la chimiokine CCL2 dans la neurotransmission nociceptive au niveau spinal / Demonstration of the physiological function of the CCL2 chemokine in spinal nociceptive neurotransmission

Dansereau, Marc-André January 2015 (has links)
Résumé : Contrairement à ce que l'on pourrait croire, les douleurs chroniques ne constituent pas uniquement des symptômes, mais bien une pathologie à part entière. La pharmacopée actuelle ne permettant pas de les soulager efficacement, il y a maintenant un besoin de les considérer dans leur spécificité lors de la recherche de nouvelles thérapies. Dans cette optique, nous avons étudié le rôle des chimiokines et de leurs récepteurs dans le contrôle de la douleur. Connu pour leur rôle dans la réponse immunitaire, nous avons en particulier investigué le rôle du couple ligand-récepteur CCL2-CCR2 dans la régulation des douleurs d’origine arthritique. Nous avons d'abord évalué l'effet analgésique de notre molécule antagoniste du récepteur CCR2, l'INCB3344, dans un modèle de douleur inflammatoire où elle renverse d'environ 50% les douleurs provoquées et les douleurs spontanées lorsqu'administrée par voie spinale. Nous avons également pu observer que bloquer l'activation de CCR2 au niveau de la moelle épinière limite non seulement la neuroinflammation spinale, mais permet également de réduire la sévérité de l'atteinte inflammatoire périphérique en limitant le transport rétrograde de la substance P. Nous avons ensuite appliqué nos observations sur un modèle de douleur arthritique plus près de la réalité clinique des patients souffrant d'arthrite rhumatoïde. Nous y avons reproduit la majorité de nos effets analgésiques suite à une administration spinale. Le traitement est cependant demeuré sans effet sur l'œdème périphérique. Parallèlement à cela, l'administration périphérique du composé, sur une base de deux bolus par jour ou en libération continue par des mini-pompes osmotiques, n'a eu que de très faibles effets analgésiques, mais s'est révélé avoir un impact marquant sur l'œdème périphérique et le gain de poids des animaux. Finalement, c'est en combinant l'INCB3344 avec de l'ibuprofène qu'il a été possible d'avoir un impact positif sur le plus grand nombre de paramètres associés à la douleur chronique. Ces résultats suggèrent donc qu'un antagoniste du récepteur CCR2 possède un potentiel analgésique intéressant, d'autant plus lorsqu'il s'agit de douleur d'origine inflammatoire puisqu'il permet d'agir à la fois sur l'hypersensibilité nociceptive et sur la source même de la douleur inflammatoire. Ce potentiel devient d'autant plus intéressant que de le combiner à un anti-inflammatoire non-stéroïdien (l'ibuprofène) améliore l'efficacité des deux composés. // Abstract : Contrary to popular beliefs, chronic pain is not only a set of symptoms, but a bona fide pathology that the drugs currently available are not sufficient to efficiently relieve. There is thus a need to modify our approach to discover new analgesic agents, taking into consideration the specific physiopathology of chronic pain. With this in mind, we investigated the role of chemokines and their receptors in the modulation of pain. Also known for their participation in the immune response, we focused on the CCL2-CCR2 ability to regulate arthritic pain. We first evaluated the analgesic properties of INCB3344, a specific antagonist of the CCR2 receptor, in a model of inflammatory pain. It reverses both provoked and spontaneous pain by 50% when administered i.t. We also observed that spinally blocking CCR2 limited the expression of proinflammatory mediators. It also reduced peripheral inflammation by preventing peripheral transport of SP. We then translated our findings in a model of arthritic pain, closer to the clinical reality of patients with rheumatoid arthritis. Spinal administration of INCB3344 had similar analgesic actions, but did not altered peripheral inflammation. On the other hand, peripheral administration of INCB3344, either by subcutaneous injection or by continuous release assured by an osmotic pump, had almost no analgesic effects, but significantly reduced peripheral inflammation and reduced the weight loss. By combining INCB3344 with a daily administration of ibuprofen, we were however able to reduce both pain hypersensitivity and the severity of the peripheral inflammation. Taken together, these results suggest that CCR2 antagonism has promising analgesic properties; especially for inflammatory or arthritic pain as it can acts both on the sensibilized nociceptive network and on the peripheral source of the inflammatory pain. This become even more interesting as its mechanism is at least not completely redundant with those of classic non-steroidal anti-inflammatory drugs, which allow the combination of both class of molecule to yield even larger effect.
7

Implication physiopathologique et pharmacologique des canaux calciques Cav 3.2 dans la douleur chronique / Pathophysiological and pharmacological involvement of Cav 3.2 calcium channels in chronic pain

Picard, Elodie 15 December 2017 (has links)
La douleur chronique occupe une place centrale dans les préoccupations de santé publique. En France, elle touche environ 20% de la population et a un impact négatif sur la qualité de vie des patients. Les traitements actuels sont généralement inefficaces ou associés à d’importants effets indésirables. Par conséquent, de nouvelles approches thérapeutiques sont nécessaires. Parmi les cibles potentielles, les canaux calciques voltage-dépendants de type T, en particulier l’isoforme Cav3.2, constituent des candidats d’intérêt. Aussi, l’objectif de cette thèse est de caractériser leur implication fonctionnelle dans deux types de douleur chronique : viscérale et somatique. Concernant la douleur viscérale, nous avons développé un modèle murin d’hypersensibilité colique associée à une inflammation à bas bruit, deux caractéristiques séméiologiques proches de la symptomatologie rencontrée chez la plupart des patients souffrant du syndrome de l’intestin irritable (SII) ou de maladies inflammatoires chroniques intestinales (MICI) durant les périodes de rémission. En ce qui concerne la douleur somatique, nous avons utilisé deux modèles murins de douleur inflammatoire, l’un présentant une inflammation subaiguë et l’autre persistante. Dans ces différents modèles, une inhibition pharmacologique via l’administration d’un antagoniste des canaux Cav3.2, le TTA-A2, ou génétique grâce à des souris présentant un Knock out (KO) de Cav3.2 a induit un puissant effet antalgique, démontrant une implication fonctionnelle des canaux Cav3.2 dans le développement et le maintien de ces types de douleur. De plus, l’utilisation de souris présentant un KO conditionnel de Cav3.2, spécifiquement dans les fibres C des ganglions de la racine dorsale (DRG), ainsi que l’emploi de l’ABT-639, un agent pharmacologique bloqueur des canaux de type T à action périphérique, nous ont permis de préciser la localisation de cette implication. Ainsi, une action majoritairement spinale présynaptique des canaux Cav3.2 a été mise en évidence pour la douleur viscérale alors qu’une action plus complexe de ces canaux est mise en jeu pour la douleur somatique inflammatoire. En effet, pour cette dernière, le canal Cav3.2 présente une implication à la fois spinale et périphérique. De plus, nous avons montré un rôle des canaux Cav3.2 dans le processus inflammatoire, s’effectuant au travers d’une implication de ces derniers dans les cellules immunitaires. Enfin, dans une démarche de recherche translationnelle, nous avons évalué l’effet de l’éthosuximide (ETX), un bloqueur des canaux de type T, utilisé en clinique dans le traitement de l’épilepsie. Nous avons décrit un effet antalgique de ce dernier dans chacun des modèles étudiés ainsi qu’une action anti-inflammatoire, apportant ainsi une preuve de concept préclinique pour une évaluation d’efficacité clinique de l’ETX dans un contexte de douleurs viscérales ou somatiques inflammatoires. L’ensemble de ces résultats apporte de nouvelles connaissances concernant l’implication des canaux Cav3.2 dans la douleur chronique et permet de proposer ces canaux comme des cibles d’intérêt pour le développement de stratégies thérapeutiques innovantes visant à soulager les patients. / Chronic pain is a central concerns to public health. In France, it affects about 20% of the population and has a negative impact on the patients’ quality of life. Current treatments are generally ineffective or associated with strong adverse effects. Therefore, new therapeutic approaches are needed. Among the potential targets, the T-type voltage-dependent calcium channels, in particular the Cav3.2 isoform, constitute candidates of interest. Thus, the objective of this thesis is to characterize their functional implication in two types of chronic pain: visceral and somatic. We have developed a murine model of colonic hypersensitivity associated with low grade inflammation, two symptomatic features close to the symptomatology found in most patients suffering from irritable bowel syndrome (IBS) or with diseases inflammatory bowel disease (IBD) during remission periods. Concerning the somatic pain, we used two murine models of inflammatory pain, one with subacute inflammation and another with persistent inflammation. In these different models, a pharmacological inhibition with the administration of a Cav3.2 channel antagonist, TTA-A2, or a genetic approach using Cav3.2 knockout (KO) mice induced a robust analgesic effect demonstrating a functional implication of Cav3.2 channels in the development and maintenance of these types of pain. Moreover, the use of mice with a Cav3.2 conditional KO, specifically in the C-dorsal root ganglia (DRG) fibers, and the use of ABT-639, a peripherally acting pharmacological blocker of type T channels, allowed us to specify the localization of this implication. Thus, a pre-synaptic spinal action of the Cav3.2 channels has been demonstrated for visceral pain whereas a more complex action of these channels is involved for inflammatory somatic pain. Indeed, for the latter, Cav3.2 channels present a spinal and peripheral implication. In addition, we have shown the role of Cav3.2 channels in the inflammatory process, with an involvement located in the immune cells. Finally, with a translational research approach, we evaluated the effect of ethosuximide (ETX), a T-channel blocker, clinically used in the treatment of epilepsy. We have described an analgesic effect of the latter in both studied models as well as an anti-inflammatory action. These results constitute a pre-clinical proof of concept for a clinical efficacy evaluation of ETX in a context of visceral pain or somatic inflammatory diseases. Altogether these results provide new insight about the involvement of Cav3.2 channels in chronic pain and allow us to propose these channels as targets of interest for the development of new therapeutic strategies to relieve patients.
8

Rôle et implication du système cannabinoïde dans la modulation périphérique de la douleur inflammatoire et neuropathique

Desroches, Julie 04 1900 (has links)
Les dérivés de l’opium (opioïdes) et du cannabis (cannabinoïdes) présentent de nombreuses propriétés intéressantes. Suite à l’identification de leurs récepteurs respectifs, diverses stratégies pharmacologiques ont tenté d’exploiter leurs propriétés analgésiques. Le clonage des récepteurs cannabinoïdes CB1 et CB2 a favorisé la découverte de composés endogènes pour ces récepteurs, les endocannabinoïdes, dont les deux plus étudiés sont l’anandamide et le 2-arachidonyl glycérol (2-AG). Cette découverte a également mené à l’identification d’enzymes qui catalysent l’inactivation de ces cannabinoïdes endogènes : une amidohydrolase des acides gras ou FAAH ainsi qu’une monoacylglycérol lipase ou MAGL. Le système cannabinoïde endogène est régulé à la hausse dans une variété de processus pathologiques, tels que les douleurs inflammatoire et neuropathique. Cette augmentation est habituellement interprétée comme une réaction physiologique visant à rétablir l’homéostasie et elle a notamment été observée en périphérie. Les endocannabinoïdes semblent donc agir de façon spécifique à des moments clés dans certains tissus ciblés afin de minimiser les conséquences reliées au déclenchement de ces douleurs. Cette observation est très intéressante d’un point de vue thérapeutique puisqu’elle suggère la possibilité de cibler les enzymes de dégradation des endocannabinoïdes dans le but d’augmenter leurs concentrations locales et d’ainsi prolonger leur action neuromodulatrice. En périphérie, l’activation des récepteurs cannabinoïdes induit des effets antinociceptifs bénéfiques tout en minimisant les effets indésirables souvent associés à leur activation centrale. Nous avons orienté nos travaux vers la modulation périphérique de ce système endogène à l’aide d’inhibiteurs des enzymes de dégradation des endocannabinoïdes afin d’évaluer leur potentiel thérapeutique et d’élucider les mécanismes d’action qui sous-tendent leurs effets dans des modèles animaux de douleurs inflammatoire et neuropathique. Nous avons démontré que cette approche permet de soulager les symptômes associés à ces deux types de douleurs, et ce via les récepteurs CB1 et CB2. Les systèmes cannabinoïde et opioïde présentent des similitudes, dont des localisations similaires le long des voies de la douleur, des mécanismes d’action relayés par des récepteurs couplés aux protéines G et des propriétés pharmacologiques communes telles que l’analgésie. Le système opioïde est impliqué dans les effets antinociceptifs induits par les cannabinoïdes. À l’inverse, le rôle joué par le système cannabinoïde dans ceux induits par la morphine demeure incertain. Nous avons démontré que les effets antinociceptifs périphériques et spinaux produits par la morphine sont diminués chez les souris génétiquement modifiées chez lesquelles l’expression des récepteurs CB1 ou CB2 a été éliminée, laissant supposer un rôle pour ces récepteurs dans les effets de la morphine. Nous avons de plus démontré que la diminution de l'analgésie produite par la morphine dans ces souris n'est pas causée par un dysfonctionnement des récepteurs opioïdes mu (MOP) ni par une régulation à la baisse de ces récepteurs. Nos résultats confirment l'existence d'interactions fonctionnelles entre les systèmes cannabinoïde et opioïde au niveau périphérique et spinal. Ces observations sont prometteuses d’un point de vue thérapeutique puisqu’une modulation périphérique ciblée des niveaux d’endocannabinoïdes et d’opioïdes endogènes permettrait de produire des effets analgésiques bénéfiques potentiellement synergiques tout en minimisant les effets indésirables associés à l’activation centrale de ces systèmes. / Opium (opioids) and cannabis (cannabinoids) derivatives present many interesting properties. Following the identification of their respective receptors, various pharmacological strategies have tried to exploit their analgesic properties. The cloning of cannabinoid CB1 and CB2 receptors has promoted the discovery of endogenous agonists of these receptors named endocannabinoids. The two mostly studied endocannabinoids are anandamide and 2-arachidonoyl glycerol (2-AG). This has also led to the identification of enzymes that catalyze the inactivation of these endogenous cannabinoids: a fatty acid amide hydrolase or FAAH and a monoacylglycerol lipase or MAGL. It is known that the endogenous cannabinoid system is upregulated in a variety of pathological processes, such as inflammatory and neuropathic pain. This increase is usually interpreted as a physiological response to restore homeostasis and it was particularly observed in the periphery. Endocannabinoids seem to act specifically at key moments in targeted tissues to minimize the consequences related to the onset of pain. This observation is very interesting from a therapeutic perspective because it suggests the possibility of targeting the endocannabinoid degrading enzymes in order to increase their local concentrations and thus prolong their neuromodulatory action. At the peripheral level, the activation of cannabinoid receptors induces beneficial antinociceptive effects while minimizing side effects often associated with their central activation. We focused our work on the peripheral modulation of this endogenous system using inhibitors of endocannabinoid degrading enzymes to assess their therapeutic potential and to elucidate the mechanisms of action underlying their effects in animal models of inflammatory and neuropathic pain. We have demonstrated that this approach can relieve the symptoms associated with these two types of pain, through the activation of CB1 and CB2 receptors. The opioid and cannabinoid systems have similarities, including comparable locations along the pain pathways, mechanisms of action relayed by G protein-coupled receptors and common pharmacological properties such as analgesia. The opioid system is involved in the antinociceptive effects induced by cannabinoids. In contrast, the participation of the cannabinoid system in those induced by morphine remains uncertain. We have demonstrated that peripheral and spinal antinociceptive effects induced by morphine are reduced in genetically modified mice in which the expression of CB1 and CB2 receptors was eliminated, suggesting a role for these receptors in the effects of morphine. We have further demonstrated that the decrease in morphine-induced analgesia in these mice is not caused by a malfunction of the mu opioid receptors (MOP) or by a down-regulation of these receptors. Our results confirm the existence of functional interactions between cannabinoid and opioid systems at the peripheral and spinal levels. These findings are promising from a therapeutic perspective since a targeted modulation of the levels of endocannabinoids and endogenous opioids would induce potentially synergistic beneficial analgesic effects while minimizing side effects associated with the central activation of these systems.

Page generated in 0.0445 seconds