Spelling suggestions: "subject:"drainage."" "subject:"frainage.""
321 |
Anesthetic Efficacy Of Buffered Lidocaine For Incision And Drainage In Symptomatic Patients With Clinical SwellingBalasco, Matthew B. 29 August 2012 (has links)
No description available.
|
322 |
Submergence, drainage and freeze-thaw effects on soil physical and chemical properties /Hundal, S. S. January 1974 (has links)
No description available.
|
323 |
Speciation of Heavy Metals in Highway Drainage SystemsWiseman, Lee P. 01 January 1985 (has links) (PDF)
A trace metal speciation scheme proposed by Batley and Florence (1976) was applied to determine the physiochemical forms of zinc, cadmium, lead, and copper in two Central Florida highway drainage systems. The linearity and limitations of the ASV technique were also examined. The measurements showed that (a) more than 70% of the soluble Zn and Cd in all of the waters analyzed existed as liable ionic metal (b) lead was divided between labile and non-labile inorganic forms, but one particular form, PbCO3, predominated (c) a substantial fraction of copper is associated with organic colloids if humic substances are present. In addition a computerized chemical model for trace and major element speciation was applied to the waters in both drainage systems using measured average water quality for input parameters. A comparison between metal species measured by ASV and those predicted by the computer model are presented. There appears to be good agreement between the metal fractions measured in the water samples by ASV and those predicted by the chemical model.
|
324 |
Nutrient Retention in Shallow Reservoirs Using Selected Aquatic MacrophytesSacco, Phillip D. 01 April 1981 (has links) (PDF)
A field experiment was conducted to evaluate the possibility of using shallow reservoirs containing aquatic plants to reduce excess nutrient levels of agricultural drainage effluent from organic soils. The reservoir systems consisted of three small reservoirs in series, containing separate stands of Eichhornia crassipes, Egeria densa and Typha sp., and a single large reservoir containing equal areas of all three aquatic plants. A control reservoir without plants was included. Drainage water from organic soils was pumped through each reservoir at 39.6 l/sec., 6 hours per day, 6 days per week. the major nutrients monitored in theses flow-through systems included nitrate-N, ammonium-N, total-N, ortho-P (soluble reactive phosphorus) and total-P. Temperature, pH, alkalinity, dissolved oxygen, carbon dioxide and turbidity were also monitored at the inflow and outflow of each reservoir system. Standing crop measurements and plant tissue analysis for nitrogen and phosphorus were conducted every 21 days. When a single large reservoir was used, effluent nitrate-N, ammonium-N, ortho-P and total-P concentrations decreased by 65%, 57.9%, 70.3% and 51% respectively, while organic-N concentrations increased by 7.2%. In the a series of small reservoirs the concentrations of nutrients decreased by 80%, 73%, 33%, 74%, and 70% for nitrate-N, ammonium-N organic-N, ortho-P and total-P respectively. The dissolved oxygen increased and turbidity was reduced in both reservoir systems. The bicarbonate and carbonate equilibrium in the series of reservoirs and control reservoir shifted to the carbonate sides as carbon dioxide was reduced. The carbon dioxide in the large reservoir remained at the same concentration throughout the study. The standing crop in both reservoir systems was similar with an average of 11.6 mt/ha grown in R-1 and 11.2 mt/ha grown in the series of reservoirs. The nitrogen retained during the study was 1017 kg/ha and 750 kg/ha in the series and the large reservoir respectively. Phosphorus retained in the series was 249 kg/ha while the large reservoir retained 211 kg/ha of phosphorus. The series of reservoirs was more effective in reducing the nutrient levels of the drainage effluent than the large single reservoir. The results obtained from this study indicated that reservoirs in series can be used to reduce excess nutrient levels of agricultural drainage waters. However, further studies are necessary to increase the efficiency of the system and to accelerate plant removal. The physical, chemical, and biological processes involved in removal of the nitrogen and phosphate should be optimized in future applications.
|
325 |
Analyse de l'efficacite de deux reseaux de drainage souterrain de la region de Nicolet.Asselin, Rémi January 1980 (has links)
No description available.
|
326 |
Integrative Bioassessment of Acid Mine Drainage Impacts on the Upper Powell River Watershed, Southwestern VirginiaSoucek, David J. 29 May 2001 (has links)
Acid mine drainage (AMD), a result of oxidation of minerals containing reduced forms of sulfur (pyrites, sulfides) upon exposure to water and oxygen, is an environmental problem associated with abandoned mined lands (AML). Numerous studies have documented the impacts of AMD upon aquatic communities within acidified stream reaches; these impacts include reduced taxonomic richness and abundance, and/or a shift from pollution sensitive to pollution tolerant species. This dissertation comprises a number of integrative assessments and experiments conducted to investigate the nature of AMD ecotoxicity in the upper Powell River watershed. Emphasis was placed upon bioassessment methodologies and AMD impacts beyond the zone of pH depression. Major findings and processes developed included: 1) an Ecotoxicological Rating (ETR) system was developed that integrates chemical, toxicological, and ecological data into a single value depicting the relative environmental integrity of a given station within a watershed; 2) water column chemistry rather than sediment toxicity was the major factor causing acute toxicity to aquatic biota in close proximity to AMD discharges; 3) solid ferric hydroxide can cause acute toxicity to standard test organisms in the absence of dissolved iron; 4) Asian clams (Corbicula fluminea) can be used to detect both acutely toxic AMD inputs and nutrient loading in low order streams, and clam responses of survival and growth reflect those of indigenous communities to the two contaminant types; 5) aluminum (Al) in transition from acidic to neutral pH waters can cause acute toxicity to aquatic invertebrates, and may be the cause of impaired benthic macroinvertebrate communities in neutral pH (>7.0) waters downstream of an acidic tributary; 6) in the larger river system (North Fork Powell and Powell mainstem), urban inputs appear to have a greater influence upon aquatic communities than metal loading from AMD impacted tributaries; 7) the use of individual level assessment endpoints, such as Asian clam growth in in situ toxicity tests, eliminates variables that may confound attribution of community level impacts to contaminants; and 8) the near elimination of predatory stoneflies (Plecoptera) downstream of the Stone/Straight Creek tributary to the North Fork Powell River was associated with water column Al concentrations.
This research was funded by the Virginia Department of Mines, Minerals, and Energy, Division of Mined Land Reclamation, and by the Powell River Project. / Ph. D.
|
327 |
The distribution of anaerobic bacteria along a soil drainage catenaDolan, Rodney Martin 12 June 2010 (has links)
Strict anaerobic culture techniques were used to enumerate the anaerobic bacteria present in three soil sites located along a drainage catena near Blacksburg, Virginia. An anaerobic cooked meat plus 0.5% glucose medium cultured the largest number of anaerobes from the poorly drained soil. The population of obligate anaerobes ranged from 10⁶/ g dry weight soil on the poorly drained soil (% moisture = 112.06) to 10⁵/g dry weight soil on the intermediate soil (% moisture = 34.51) to 10⁴/g dry weight soil on the well drained soil (% moisture 20.81). The population of organisms able to grow anaerobically (facultative plus obligate) ranged from 10⁶/g dry weight soil on the poorly drained site to 10⁵/g dry weight soil on the well drained site. This same population on the poorly drained site was relatively constant over a nine month period with the exception of a sharp rise in early spring. The clostridia constituted at least one third of the obligately anaerobic bacteria present on the poorly drained soil. A sizeable percentage of the obligate anaerobic isolates on this site were either clostridia which formed spores unable to germinate in the medium employed, clostridia which were very pleomorphic in cell shape and gram reaction, or nonsporeforming obligate anaerobes. These results indicate that strict anaerobes and possibly nonsporeforming strict anaerobes exist in soils of different drainage character even though facultative organisms appear to be more successful competitors on the more well drained sites. / Master of Science
|
328 |
The effect of carbon addition, pH and Fe concentration of microbial sulfate reduction and the subsequent precipitation of Fe and Mn from acid mine drainage in wetland mesocosmsDuddleston, Khrystyne Noel 11 May 2010 (has links)
A wetland was constructed near Norton, VA by Westmoreland Coal Company to treat acid mine drainage (AMD) from an inactive coal refuse pile. The AMD had an average inflow pH of 7.0, and average inflow concentrations measuring 4 mg/L total Fe, 3 mg/L total Mn and 450 mg/L dissolved sulfate. An 18 month field study of water quality improvement and sulfate-reducing bacterial (SRB) populations revealed that the wetland was effectively treating the AMD. Iron and Mn both met compliance standards set by the EPA requiring an instream Fe concentration of 3 mg/L and an instream Mn concentration of 2 mg/L. SRB averaged 8.7 x 10⁴ through the 18 month study period as determined by the Most Probable Number (MPN) method. The concentration of sulfate was decreased by an average of 360 mg/L as the AMD passed through the wetland.
In a separate laboratory study, the effect of carbon addition, pH and Fe concentration on microbial sulfate reduction and the subsequent precipitation of Fe and Mn was determined in mesocosms built to simulate a wetland. Mesocosms were constructed with plexiglass sheets and measured 6" x 6" x 24". Each mesocosm was filled with a 4-inch layer of limestone gravel beneath 17 inches of weathered pine bark mulch. A perforated PVC pipe was installed within the limestone layer to act as an underground drain. With mulch as the only source of available carbon, a 15% decrease in total sulfate concentration occurred in AMD containing initial concentrations of 1500, 750 and 375 mg/L sulfate. The population of SRB averaged 10⁵/ g dry mulch. The addition of 300 mg/L carbon as lactate resulted in an a 3 log₁₀ increase in SRB population. Following the addition of carbon as lactate, the concentration of sulfate decreased 95%. Total Fe decreased 90% from inflow concentrations prior to the addition of lactate, and decreased 96% following the addition of lactate to the AMD.
The effect of varying the influent pH of AMD was studied using wetland mesocosms, and a pH of 3.5 adversely affected microbial sulfate reduction and water quality improvement. Populations of SRB decreased by 3 log₁₀ from an initial population of 10⁸ SRB/g dry mulch. Iron and Mn concentrations decreased 70 and 37% respectively. Hydrogen ion concentration increased to 7.0 and above when inflow pH was 4.5 and 6.0, but increased to an average of 6.4 when inflow pH was 3.5.
The effect of different concentrations of Fe within AMD was investigated using wetland mesocosms, and total inflow Fe concentrations of 155 and 301 mg/L resulted in a greater percent decrease in sulfate concentrations than at a lessor Fe concentration averaging 85 mg/L. Total Mn decreased 12% at an inflow Fe concentration of 85 mg/L, and decreased 43% at an inflow Fe concentration of 301 mg/L. The results generated from both the analysis of the Pine Branch wetland and the laboratory mesocosm experiments demonstrate that subsurface flow constructed wetlands are a viable form for treatment of AMD.
2197820b-4775-4425-b667-55393f34b513,"This thesis deals with the deliberate insertion of nonlinear elements in second-order linear control systems for the purpose of improving their transient response. The main body consists of a method of obtaining a desired step response by placing a nonlinear computer in the forward loop. This computer fixes the system trajectory in the phase plane by determining the required output velocity for the error present at any time. An inner control loop adjusts the output velocity to agree with the computed signal in an extremely short time, thus giving a very close agreement between actual and desired responses.
Several examples are presented to show the application of this method, and experimental verification is obtained with an analog computer. Areas of future study and practical limitations are discussed in the final sections of the thesis. / Master of Science
|
329 |
The Impacts of Acid Mine Drainage on the Black Creek Watershed, Wise County, VirginiaYeager, Jessica Lynn 26 August 2004 (has links)
Black Creek is a small watershed located in Wise County, Virginia, west of the town of Norton. At the time of this survey, the watershed encompassed approximately 929 hectares of mine and forest lands with a small recreational area. Black Creek proper is a third-order stream approximately 6.7 km in length from its headwaters to its confluence with the Powell River in Kent Junction. Black Creek and several of the tributaries within the watershed were previously identified as areas impacted by acid mine drainage. The watershed was used in a study to identify sources of acid mine drainage and the best methods for its evaluation.
The acid mine drainage sources were first identified using visual inspection and field chemistry. Additional stream segments were then included in the assessment process using metal (aluminum, copper, iron, magnesium, manganese, and zinc) analyses of both overlying water column and sediments.
Using an upstream reach of Black Creek as a reference, short-term toxicity testing was employed, as well as a long-term purge study. The pH at sampling locations ranged from 2.75 to 7.87 SU, and conductivity ranged from 196 μmhos/cm to 2040 μmhos/cm. All metals were elevated when compared to the reference. Water column samples collected from locations with low pH were acutely toxic to Daphnia magna and Pimephales promelas. Mortality was high in the elutriant test at locations where pH was low, conductivity was elevated, metals were high, or a combination of these.
In the initial sediment tests, all sampling locations were significantly different than the reference for survival of Chironomus tentans and reproduction of D. magna. One location was significantly different than the reference for survival of D. magna. In the sediment tests completed after two months, survival of C. tentans was only different from the control in three locations but was significantly different for growth at all locations. Reproduction by D. magna was again significantly less than the reference at all locations. At eight months, only two locations were significant for survival of C. tentans and after 15 months, no significant differences occurred between any stations. The study indicates that stream segments that are severely impaired by acid mine drainage are easy to identify using visual inspection and field water chemistry. Those that are moderately impaired require more investigation and may not be responsive to short-term toxicity tests.
Benthic macroinvertebrates, leaf packs, and periphyton were evaluated in the field. Benthic macroinvertebrate communities and leaf-pack breakdown were evaluated at nine locations, while periphyton was evaluated at the mouth of Black Creek, as well as five sites in the Powell River receiving system. While leaf-pack information and benthic macroinvertebrate samples yielded similar information, benthic sampling was much simpler and less time consuming. Additionally, benthic macroinvertebrate sampling, particularly over several sampling events, was more sensitive at the most severely impacted AMD stations.
The stations were broken down into five different categories in order to better determine which evaluation techniques were most sensitive and cost-effective. The five categories were Non-Impaired, Slightly Impaired, Moderately Impaired, Severely Impaired, and Severely pH impaired. Once the locations were categorized, each method used to evaluate toxicity was examined to determine which methods best identified acid mine drainage impairment in the Black Creek watershed. The methods utilized include the following: basic water chemistry; metals analysis of sediments and water column; acute toxicity testing using both D. magna and P. promelas; short-term elutriant and sediment tests; chronic sediment test using C. tentans and D. magna; a purge study; benthic macroinvertebrate sampling; leaf-pack and algal-tile studies. After evaluating these methods, it was determined that using basic water chemistry and benthic macroinvertebrate sampling were the best methods for evaluating acid mine drainage impairment in this watershed.
The reference station was identified as Non-Impaired. Two stations located in the lower portions of Black Creek (L11 and L1) were also Non-Impaired or only Slightly Impaired with the benthic macroinvertebrate results indicating little impairment. Stations U2, U6, U7, and BBM were also found to be Slightly Impaired. The station on the margin of the wetland, U5, was Moderately Impaired. Two previously identified areas of impairment, U9 and U10, (Cherry et al. 1995) were identified as Severely pH Impaired and Severely Impaired, respectively. / Master of Science
|
330 |
Sustainable Urban Drainage System - More than a drainage solution?Kennedy, S.P., Lewis, L., Wong, S., Sharp, Liz January 2007 (has links)
No
|
Page generated in 0.0656 seconds