• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 19
  • 19
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Study of Top of the Line Corrosion under Dropwise Condensation

Zhang, Ziru 22 April 2008 (has links)
No description available.
12

Determination and Characterization of Ice Propagation Mechanisms on Surfaces Undergoing Dropwise Condensation

Dooley, Jeffrey B. 2010 May 1900 (has links)
The mechanisms responsible for ice propagation on surfaces undergoing dropwise condensation have been determined and characterized. Based on experimental data acquired non-invasively with high speed quantitative microscopy, the freezing process was determined to occur by two distinct mechanisms: inter-droplet and intradroplet ice crystal growth. The inter-droplet crystal growth mechanism was responsible for the propagation of the ice phase between droplets while the intra-droplet crystal growth mechanism was responsible for the propagation of ice within individual droplets. The larger scale manifestation of these two mechanisms cooperating in tandem was designated as the aggregate freezing process. The dynamics of the aggregate freezing process were characterized in terms of the substrate thermal di usivity, the substrate temperature, the free stream air humidity ratio, and the interfacial substrate properties of roughness and contact angle, which were combined into a single surface energy parameter. Results showed that for a given thermal di usivity, the aggregate freezing velocity increased asymptotically towards a constant value with decreasing surface temperature, increasing humidity, and decreasing surface energy. The inter-droplet freezing velocity was found to be independent of substrate temperature and only slightly dependent on humidity and surface energy. The intra-droplet freezing velocity was determined to be a strong function of substrate temperature, a weaker function of surface energy, and independent of humidity. From the data, a set of correlational models were developed to predict the three freezing velocities in terms of the independent variables. These models predicted the majority of the measured aggregate, inter- and intra-droplet freezing velocities to within 15%, 10%, and 35%, respectively. Basic thermodynamic analyses of the inter- and intra-droplet freezing mechanisms showed that the dynamics of these processes were consistent with the kinetics of crystal growth from the vapor and supercooled liquid phases, respectively. The aggregate freezing process was also analyzed in terms of its constituent mechanisms; those results suggested that the distribution of liquid condensate on the surface has the largest impact on the aggregate freezing dynamics.
13

Experimental Investigation And Modeling Of Dropwise Condensation On A Horizontal Gold Coated Tube

Serdar, Orhan 01 December 2004 (has links) (PDF)
The phenomenon dropwise condensation on a horizontal gold coated tube is investigated by both analytical and experimental methods in this study. A computer program is prepared to calculate the dropwise condensation heat transfer rate on the horizontal gold coated tube. An experimental setup was also manufactured to measure the dropwise condensation heat transfer rate. The effects of flow rate, temperature of cooling water and also steam to wall temperature difference have been analytically investigated by using Mathcad computer program. Experiments were carried out at different inlet temperatures of cooling water. Effects of cooling water at different flow rates are also experimentally investigated. Results of the experiments are compared to those of the literature and the analytical results.
14

Experimental and Theoretical Investigation of Nucleation Site Density and Heat Transfer During Dropwise Condensation on Thin Hydrophobic Coatings

Sablowski, Jakob, Galle, Lydia, Grothe, Julia, Roudini, Mehrzad, Winkler, Andreas, Unz, Simon, Beckmann, Michael 02 August 2023 (has links)
Dropwise condensation (DWC) has the potential to enhance heat transfer compared to filmwise condensation (FWC). The heat transfer rates achieved by DWC depend on the drop size distribution, which is influenced by nucleation processes of newly formed drops. In DWC modeling, the nucleation site density Ns is used as an input parameter to obtain the drop size distribution of small drops. However, due to the small scale of the condensate nuclei, direct observation is difficult, and experimental data on the nucleation site density are scarce. In the literature, values in the range of 109 m−2 to 1015 m−2 can be found for Ns. In this paper, we report DWC experiments on SiO2 and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) thin hydrophobic coatings that show significantly different nucleation site densities. Nucleation site densities are estimated from high-speed imaging of small drops during initial condensation and from model calibration using established DWC theory. We have found the values for Ns to be in the range from 1.1×1010 m−2 to 5.1×1011 m−2 for the SiO2 coating and 1011 m−2 to 1013 m−2 for the PFDTES coating. Our results show that there can be large differences in the nucleation site density under similar conditions depending on the surface properties. This underlines the importance of investigating nucleation site density specifically for each surface and under consideration of the specific process conditions used for DWC.
15

Dropwise condensation in the presence of non-condensable gas

Zheng, Shaofei 16 January 2020 (has links)
Dropwise condensation, which collects the condensate liquid in the form of droplets, has attracted a growing interest due to much higher heat transfer coefficient. One important and challenging issue in dropwise condensation is the presence of non-condensable gas (NCG) which drastically reduces its heat transfer performance. Concerning the mechanism understanding, this thesis is aiming to investigate dropwise condensation in case of NCG by combing different methods. Firstly, convective dropwise condensation out of moist air is experimentally investigated under controllable conditions. In modeling, some crucial aspects are reasonably captured: the coupled heat and mass transfer during droplet growth by a multi-scale droplet growth model; the inter-droplet interaction defined by a distributed point sink method; the enhancement of the convective mass transfer using the droplet Sherwood number. Furthermore, a multi-component multi-phase thermal pseudopotential-based LB model is developed to advance the directly numerical simulation of dropwise condensation.
16

Droplet Heat and Mass Exchange with the Ambient During Dropwise Condensation and Freezing

Julian Castillo (9466352) 16 December 2020 (has links)
<div> <p>The distribution of local water vapor in the surrounding air has been shown to be the driving mechanism for several phase change phenomena during dropwise condensation and condensation frosting. This thesis uses reduced-order modeling approaches, which account for the effects of the vapor distribution to predict the droplet growth dynamics during dropwise condensation in systems of many droplets. High-fidelity modeling techniques are used to further probe and quantify the heat and mass transport mechanisms that govern the local interactions between a freezing droplet and its surrounding ambient, including neighboring droplets. The relative significance of these transport mechanisms in the propagation of frost are investigated. A reduced-order analytical method is first developed to calculate the condensation rate of each individual droplet within a group of droplets on a surface by resolving the vapor concentration field in the surrounding air. A point sink superposition method is used to account for the interaction between all droplets without requiring solution of the diffusion equation for a full three-dimensional domain. For a simplified scenario containing two neighboring condensing droplets, the rates of growth are studied as a function of the inter-droplet distance and the relative droplet size. Interactions between the pair of droplets are discussed in terms of changes in the vapor concentration field in the air domain around the droplets. For representative systems of condensing droplets on a surface, the total condensation rates predicted by the reduced-order model match numerical simulations to within 15%. The results show that assuming droplets grow as an equivalent film or in a completely isolated manner can severely overpredict condensation rates.</p> <p>The point superposition model is then used to predict the condensation rates measured during condensation experiments. The results indicate that it is critical to consider a large number of interacting droplets to accurately predict the condensation behavior. Even though the intensity of the interaction between droplets decreases sharply with their separation distance, droplets located relatively far away from a given droplet must be considered to accurately predict the condensation rate, due to the large aggregate effect of all such far away droplets. By considering an appropriate number of interacting droplets in a system, the point sink superposition method is able to predict experimental condensation rates to within 5%. The model was also capable of predicting the time-varying condensation rates of individual droplets tracked over time. These results confirm that diffusion-based models that neglect the interactions of droplets located far away, or approximate droplet growth as an equivalent film, overpredict condensation rates.</p> <p>In dropwise condensation from humid air, a full description of the interactions between droplets can be determined by solving the vapor concentration field while neglecting heat transfer across the droplets. In contrast, the latent heat released during condensation freezing processes cause droplet-to-ambient as well as droplet-to-droplet interactions via coupled heat and mas transfer processes that are not well understood, and their relative significance has not been quantified. As a first step in understanding these mechanisms, high-fidelity modeling of the solidification process, along with high-resolution infrared (IR) thermography measurements of the surface of a freezing droplet, are used to quantify the pathways for latent heat dissipation to the ambient surroundings of a droplet. The IR measurements are used to show that the crystallization dynamics are related to the size of the droplet, as the freezing front moves slower in larger droplets. Numerical simulations of the solidification process are performed using the IR temperature data at the contact line of the droplet as a boundary condition. These simulations, which have good agreement with experimentally measured freezing times, reveal that the heat transferred to the substrate through the base contact area of the droplet is best described by a time-dependent temperature boundary condition, contrary to the constant values of base temperature and rates of heat transfer assumed in previous numerical simulations reported in the literature. In further contrast to the highly simplified descriptions of the interaction between a droplet and its surrounding used in previous models, the model developed in the current work accounts for heat conduction, convection, and evaporative cooling at the droplet-air interface. The simulation results indicate that only a small fraction of heat is lost through the droplet-air interface via conduction and evaporative cooling. The heat transfer rate to the substrate of the droplet is shown to be at least one order of magnitude greater than the heat transferred to the ambient air.</p> <p>Subsequently, the droplet-to-droplet interactions via heat and mass exchange between a freezing droplet and a neighboring droplet, for which asymmetries are observed in the final shape of the frozen droplet, are investigated. Side-view infrared (IR) thermography measurements of the surface temperature for a pair of freezing droplets, along with three-dimensional numerical simulations of the solidification process, are used to quantify the intensity and nature of these interactions. Two droplet-to-droplet interaction mechanisms causing asymmetric freezing are identified: (1) non-uniform evaporative cooling on the surface of the freezing droplet caused by vapor starvation in the air between the droplets; and (2) a non-uniform thermal resistance at the contact area of the freezing droplet caused by the heat conduction within the neighboring droplet. The combined experimental and numerical results show that the size of the freezing droplet relative to its neighbor can significantly impact the intensity of the interaction between the droplets and, therefore, the degree of asymmetry. A small droplet freezing in the presence of a large droplet, which blocks vapor from freely diffusing to the surface of the small droplet, causes substantial asymmetry in the solidification process. The droplet-to-droplet interactions investigated in thesis provide insights into the role of heat dissipation in the evaporation of neighboring droplets and ice bridging, and open new avenues for extending this understanding to a system-level description for the propagation of frost.</p> </div> <br>
17

Full-scale experimental characterization of a non-isothermal realistic air jet for building ventilation : Local interaction effects, moisture transport and condensation prediction / Caractérisation expérimentale d'un jet d'air anisotherme réaliste pour la ventilation du bâtiment : L'interaction du local, le transport d'humidité et la condensation

Nguyen, Chi Kien 25 October 2018 (has links)
La compréhension de la distribution de l'air intérieur accompagné du transfert couplé "chaleur-air-humidité" est essentielle à la conception des systèmes de ventilation des bâtiments. Parmi les méthodes de distribution d'air intérieur, la ventilation par mélange est l'une des plus couramment utilisées, dont la performance est déterminée par celle du jet d'air injecté. Au cours des dernières décennies, bien que de nombreuses recherches aient été menées sur les études des jets d'air, la majorité de ces études se sont concentrées sur une disposition symétrique des bouches de soufflage et d’extraction par rapport à la géométrie du local. En outre, les études traitant du transfert couplé "chaleur-air-humidité", qui inclut le phénomène de condensation sur la surface interne du local, sont encore limités dans la littérature. Ainsi, ce travail se concentre sur la problématique suivante : Quel est le comportement d'un jet d'air réaliste sous des effets d'interaction et comment caractériser de tels jets d'air ? Dans des conditions d'intérieur réalistes favorisant la condensation sur une surface froide, serait-il possible de quantifier le débit massique de condensation ? Les deux études sont expérimentées dans la cellule d’essais MINIBAT à l’échelle 1. La première partie consiste à caractériser un jet d'air turbulent au plafond dans une configuration d’écoulement intérieur réaliste. Les résultats expérimentaux montrent les effets d'interaction visibles des éléments architecturaux de la pièce sur le comportement du jet d'air tels que la déviation de la trajectoire du jet ainsi que la déformation des profils du jet. Les principales caractéristiques du jet, telles que le taux d’expansion, la décroissance de vitesse et de température, sont quantifiées. Une méthode graphique basée sur un indicateur de déformation est proposée pour quantifier la déformation des profils transversaux du jet.La deuxième partie de ce travail traite le phénomène de condensation sur une surface vitrée en reproduisant les conditions hivernales dans la cellule d’essais. L’apparition de la condensation et son mécanisme de croissance sont observés à l'aide d'une technique de macrophotographie. Le post-traitement de l'image permet d'estimer le débit de condensation. Les comparaisons entre les résultats expérimentaux et théoriques montrent un certain accord, ce qui pourrait valider la faisabilité des techniques d'imagerie dans les études de condensation à l’échelle 1. Des données expérimentales détaillées accompagnées de conditions aux limites bien connues issues de ce travail pourraient servir de test de benchmark pour la validation des modèles CFD, en particulier pour les configurations d’écoulement asymétrique, avec la présence de la condensation. / Understanding room air distribution with coupled heat-air-moisture transport is essential to the design of building ventilation systems. In the past decades, although numerous research have been undertaken on air jet studies, there are still some issues that deserve a consideration. In fact, the majority of these studies focused on a symmetric arrangement of supply and exhaust air outlets with respect the room geometry. Besides, studies dealing with room coupled heat-air-moisture transport, which includes the condensation phenomenon on the room inner surface, are generally lacking in the literature. Hence, this work focuses on the following problematic: What is the behavior of a realistic air jet under interaction effects and how to characterize such air jets? In realistic indoor conditions promoting condensation on cold surface, would we be able to quantify the condensate mass flow rate? The two studies are experimentally investigated in the full-scale MINIBAT controlled test cell. The first part consists in characterizing a ceiling turbulent air jet in a realistic indoor airflow configuration. The experimental results show visible interaction effects of the room architectural elements on the air jet behavior: they have deviated the jet trajectory as well as deformed the jet cross-sectional shape. The jet main characteristics such as the spread rate, the velocity and temperature decay are quantified. A graphical-based method is proposed to quantify the jet shape deformation using a so-called deformation indicator. The second part of this work treats the phenomenon of moisture condensation on a glazing surface by reproducing a winter condition within the test cell. The condensation appearance and its growth mechanism are observed using a macro-photography technique. The image post-processing enabled to estimate the condensation rate. Comparisons between experimental and theoretical results show some agreement, which could validate the feasibility of imaging techniques in full-scale condensation studies.Detailed experimental data accompanied by well-known boundary conditions from this work could serve as a benchmark test for CFD models validation, in particular for asymmetric airflow configurations, with the presence of the condensation phenomenon.
18

NANOMATERIALS FOR HIGH EFFICIENCY MEMBRANE DISTILLATION

Harsharaj Birendrasi Parmar (10712010) 06 May 2021 (has links)
<div>Thermal desalination of high salinity water resources is crucial for increasing freshwater supply, but efficiency enhancements are badly needed. Nanomaterial enhancements and novel condensation regimes offer enormous potential for improving promising technologies like membrane distillation (MD). In this work, we first examined nanofluids for MD, including the role of nanoscale physics, and model system-level energy efficiency enhancements. Our model included the dominant micro-mixing from Brownian motion in fine particle nanofluids (copper oxide) and the unusually high axial conduction from phonon resonance through Van der Waals interaction in carbon nanotube nanofluids. Carbon nanotubes resulted in a consistent, wide range of improvements; while copper oxide particles showcased diminishing returns after a concentration of 0.7%, where Brownian motion effects reduced. However, the enhancements at higher concentrations from liquid layering around nanoparticles were impractical in MD, since the related high surfactant levels compromised the membrane hydrophobicity and promoted fouling. Dilute solutions of metallic nanofluids can be actively integrated to enhance the performance of MD, whereas stronger nanofluid solutions should be limited to heat exchangers that supply thermal energy to MD systems. We then investigated slippery liquid infused porous surfaces (SLIPS) for enhanced condensation rates in MD. Dropwise condensation heat transfer was modelled considering the effects of the departing, minimum droplet radii and the interfacial thermal resistances. Effective droplet shedding from these surfaces led to an experimental thermal efficiency of 95%. Alternatively, porous condensers with superior wicking properties and conductive heat transfer offered a robust solution to high salinity desalination. We modelled the onset of flooding in porous condensers using Darcy’s law for porous media, including the effects of the condenser permeability and determined the optimal condenser thickness at varying system length scales. The increased active area of condensation resulted in a significant enhancement (96.5%) in permeate production and 31.7% improvement in experimental thermal efficiency. However, porous condensers were only compatible with flat plate module designs limiting their practicality.</div>
19

Evaporation-Induced Salt Precipitation in Porous Media and the Governing Solute Transport

Rishav Roy (13149219) 25 July 2022 (has links)
<p>  </p> <p>Water scarcity is a global problem impacting a majority of the world population. A significant proportion of the global population is deprived of clean drinking water, an impact felt by the rural as well as urban population. Saltwater desalination provides an attractive option to produce clean water. Some technologies to generate potable water include reverse osmosis (RO), multi-stage flash distillation (MSF), vapor compression distillation and multi-effect distillation (MED). Distillation plants such as those in MED often have falling-film evaporators operating at low energy conversion efficiency and hence distillation is performed over multiple stages (or effects). Porous materials can be utilized as evaporators in such plants with the objective of leveraging their superior efficiency. This can potentially decrease the number of effects over which distillation occurs. However, evaporation of high-salinity salt solution eventually results in salt precipitation which can cause fouling and induce structural damages, especially if the precipitates appear within the porous medium. Crystallization-induced structural damages are also of significant concern to building materials and for their role in weathering of historical monuments. It is thus crucial to understand the mechanisms governing salt precipitation in a porous medium.</p> <p>Transport of solute in such a medium is either driven by flow of the solution (advection) or by concentration gradients (diffusion). The dynamics of solute transport is further complicated due to the involvement of a reaction term accounting for any salt precipitation. The relative strengths of these driving forces determine the solute transport behavior during an evaporation-driven process. The wide-scale applications of solute transport and its complicated nature warrant investigation, both experimental and theoretical, of the dependence of solute transport and the subsequent precipitation on the operating conditions and the properties of the porous medium.</p> <p>This dissertation first focuses on developing a novel modeling framework for evaluating the transient behavior of the solute mass fraction profile within the domain of a one-dimensional porous medium, and extending its capability to predict the formation of salt precipitate in the medium.  Experimental investigations are then performed to study the formation of precipitate on sintered porous copper wicks of different particle-size compositions, and developing a mechanistic understanding of the governing principles.</p> <p>A numerical modeling framework is developed to analyze evaporation-driven solute transport. Transient advection-diffusion equations govern the salt mass fraction profile of the solution inside the porous medium. These governing equations are solved to obtain the solute mass fraction profile within the porous medium as well as the effloresced salt crust. Further accounting for precipitation allows a study of the formation and growth of efflorescence and subflorescence. Crystallization experiments are performed by allowing a NaCl solution to evaporate from a porous medium of copper particles and the subflorescence trends predicted by the model are validated. The modeling framework offers a comprehensive tool for predicting the spatio-temporal solute mass fraction profiles and subsequent precipitation in a porous medium.</p> <p>The dependence of efflorescence pattern on the properties of a porous medium is also investigated. Efflorescence patterns are visually observed and characterized on sintered copper particle wicks with spatially unimodal and bimodal compositions of different particle sizes. Efflorescence is found to form earlier and spread readily over a wick made from smaller particles, owing to their lower porosity, while it is limited to certain areas of the surface for wicks composed of the larger particles. A scaling analysis explains the observed efflorescence patterns in the bimodal wicks caused by particle size-induced non-uniform porosity and permeability. The non-uniformity reduces the advective flux in a high-permeability region by diverting flow towards a low-permeability region. This reduction in advective flux manifests as an exclusion distance surrounding a crystallization site where efflorescence is not expected to occur. The dependence of this exclusion distance on the porosity and permeability of the porous medium and the operating conditions is investigated. A large exclusion distance associated with the regions with bigger particles in the bimodal wicks explains preferential efflorescence over the regions with smaller particles. This novel scaling analysis coupled with the introduction of the exclusion distance provides guidelines for designing heterogeneous porous media that can localize efflorescence.</p> <p>Additionally, droplet interactions with microstructured superhydrophobic surfaces as well as soft surfaces were investigated during the course of this dissertation, separate from the above investigations. These investigations involve the interplay of surface energies with electrical or elastic energies and are studied both experimentally and through theoretical models, and therefore are retained as additional chapters in the thesis as being of relevant interest.  Electrowetting experiments are performed on superhydrophobic surfaces with re-entrant structures to study their resilience to the Cassie-to-Wenzel transition. The deformation of soft surfaces caused by forces exerted by microscale droplets is studied and the resulting interaction between multiple droplets is explored. </p>

Page generated in 0.0313 seconds