• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 855
  • 118
  • 79
  • 61
  • 57
  • 18
  • 16
  • 11
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 1646
  • 1646
  • 426
  • 248
  • 220
  • 163
  • 149
  • 127
  • 121
  • 121
  • 114
  • 113
  • 100
  • 97
  • 97
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

<i>In vitro</i> viable skin model development to assess cutaneous delivery and metabolism of ester-type compounds

Asavapichayont, Panida 01 January 2000 (has links)
A viable <i>in vitro</i> excised human skin model was developed to accurately assess cutaneous delivery and metabolism of two ester type compounds; tetracaine (TC) and methyl salicylate (MS). This model could maintain the viability of fresh skin in diffusion cells for 24 hours. Skin viability was assessed using two methods; oxygen consumption measurement and confocal laser scanning microscopy. Two fluorescent probes, calcein AM and ethidium homodimer-1, were used as live and dead markers, respectively. General morphology and localization of nonspecific esterase activity in the skin samples from diffusion cell were checked histologically. Cutaneous delivery and metabolism of MS was evaluated with this viable skin model and compared to human skin homogenate model. A sensitive high performance liquid chromatography (HPLC) assay using reversed phase ion pair was developed/refined to simultaneously analyze TC and its metabolite (4-BABA). Several factors affecting this HPLC system were identified. The limit of detection for TC and 4-BABA was 0.3 ng and 0.5 ng, respectively. The limit of quantitation for TC and 4-BABA was 10 ng and 5 ng, respectively. Linearity was in the range of 10-120 ng for TC and 5-60 ng for 4-BABA. MS was hydrolyzed to salicylic acid (SA) during absorption through fall thickness human breast skin in diffusion cells. The extent of MS hydrolysis was significantly higher in viable skin than in non viable. The extent of absorption of SA through viable and non viable skins was similar. In human skin homogenate, MS was hydrolyzed at the rate of 72.31 nmol/h/[mu]g protein while the hydrolysis in phosphate buffered saline was very low. TC hydrolysis in human skin homogenate was not extensive due to substrate inhibition. From the kinetic study of TC hydrolysis in human skin homogenate, Km was in the 11-28 [mu]M range and Vmax was in the 2.0-2.8 [mu]mol/h/[mu]g protein range. Temperature over 60°C substantially reduced esterase activity in both models therefore caution must be taken during preparation and handling of tissue samples to preserve esterase activity. The viable <i>in vitro</i> excised skin model will provide more accurate quantitation of skin metabolism and absorption of xenobiotics.
452

Drug Delivery and Anti-Vascular Effects of Temperature Sensitive Liposomal Doxorubicin

Manzoor, Ashley Anne January 2010 (has links)
<p>Traditionally, the goal of nanoparticle-based chemotherapy has been to decrease normal tissue toxicity by improving drug specificity to tumor. Relying on the EPR effect (Enhanced Permeability and Retention), a host of nanoparticles (from micelles and dendrimers to liposomes and lipidic nanoparticles) have been developed and tested for passive accumulation into tumor interstitium. Unfortunately, most nanoparticles achieve only suboptimal drug delivery to tumors, due to heterogeneity of tumor vessel permeability, limited nanoparticle penetration, and relatively slow drug release. However, recent developments in nanoparticle technology have occurred with the design and testing of a fast drug-releasing liposome triggered by local heat. This temperature-sensitive liposome formulation loaded with doxorubicin (Dox-TSL) has already shown substantial anti-tumor efficacy and is currently in clinical trials.</p><p> Previous pre-clinical work to understand the mechanism of efficacy has illustrated increases in overall drug concentration in the tumor, and an anti-vascular effect not observed with heat alone. These initial studies have also suggested that these liposomes may be the most efficacious when they are injected into a pre-heated tumor, with the hypothesis that in this treatment scheme the liposomes may be releasing inside the tumor vasculature. However, whether intravascular release is indeed occurring, and the subsequent implications this paradigm change in drug delivery could have are still unanswered questions. </p><p>The experiments presented herein aimed to investigate two effects: the existence and influence of intravascular drug release on drug delivery and distribution within the tumor, and the effect of drug delivery on subsequent anti-vascular effects. To investigate drug delivery, two mouse models were used. Dorsal window chambers implanted with FaDu human squamous carcinomas were used with real-time intravital confocal microscopy to evaluate time-resolved delivery of doxorubicin and liposome extravasation over the first 20 minutes of treatment. As a complimentary mouse model, flank FaDu tumors were also treated with Dox-TSL or treatment controls (doxorubicin with and without heat and Doxil with heat), and subsequently sectioned and histologicaly imaged to evaluate drug delivery and penetration depth, as well as impact on hypoxia and perfusion parameters. To investigate vascular effects, a GFP-eNos transgenic mouse model was used, also with window chamber confocal microscopy, to evaluate morphological changes occurring in the tumor vasculature following treatment.</p><p> The results presented herein demonstrate that contrary to the traditional liposome paradigm of extravasation and subsequent drug release, thermally sensitive liposomes release drug inside the tumor vasculature, and that the released free drug diffuses into the tumor interstitium. Real-time confocal imaging of doxorubicin delivery to murine tumor window chambers illustrates that intravascular drug release provides a mechanism to increase both the time that tumor cells are exposed to maximum drug levels and the penetration distance achievable by free drug diffusion. Histological analysis further confirms this finding, illustrating that drug delivered with Dox-TSL intravascular release can result in drug penetration levels up to 80 µm from vessels, in comparison with 40 µm achievable with free drug with heat. Further, Dox-TSL delivers drug to a higher percentage of a tumor's hypoxic area than possible with free drug with or without heat. Endothelial cells display marked morphological changes apparent immediately following treatment, with significant vascular destruction at 6 hours. However, heat had a similar influence on vascular morphology, underscoring the complexity of the anti-vascular effect, particularly in the more sensitive vasculature of a mouse model compared with reported human vascular heat tolerances. This work establishes intravascular release as a new paradigm in drug delivery to solid tumors, resulting in improved drug bioavailability, penetration depth, and enhanced delivery of drug to hypoxic regions of tumors.</p> / Dissertation
453

Electroporation-Mediated Delivery Of Macromolecules To Intestinal Epithelial Models

Ghartey-Tagoe, Esi B. (Esi Baawah) 09 January 2004 (has links)
This study was conducted to determine if electroporation could deliver membrane-impermeant molecules intracellularly to intact, physiologically competent monolayers that mimic the intestinal epithelium. The long-term effects of electroporation on these monolayers were studied to determine the kinetics with which monolayers recover barrier function. The ability of electroporation to introduce biologically active molecules, e.g., plasmid DNA and siRNA, into these monolayers, to either express a protein of interest or modify cellular function, was also studied. Results showed that intracellular uptake of calcein, a small tracer molecule, and bovine serum albumin, a globular protein, occurred uniformly throughout the monolayers and increased as a function of voltage, pulse length, and pulse number. There was no significant difference in uptake resulting from single and multiple pulses of the same total exposure time. Barrier function recovery depended on the electroporation conditions applied, with some monolayers recovering normal physiologic function within a day. Electroporation also increased the permeability of the monolayers to calcein and BSA, possibly through a combination of increased paracellular and transmonolayer transport. When compared to cationic lipid transfection (lipofection), transfection of intestinal epithelial monolayers with reporter plasmids by electroporation was more efficient in situations where high concentrations of DNA, and as a result, higher levels of expression were needed. Although uptake of DNA was high after electroporation and increased with increasing amounts of DNA, overall expreseion efficiency was still low (~3%). Electroporation-mediated transfection of intestinal epithelial monolayers with a plasmid that expressed inflammation inhibitor protein, IκВα was not always successful, probably because of low levels of protein expression. Introduction of the much smaller siRNA molecules into the monolayers by electroporation, on the other hand, was very successful at inhibiting the production of the nuclear envelope proteins lamin A and lamin C. The results of these experiments demonstrated that electroporation can introduce a wide variety of molecules intracellularly into model intestinal epithelia. These results should be useful to identify optimal electroporation conditions for transporting drugs, proteins, and genes into intestinal and, possibly, other epithelia for local drug and gene therapy, as well as for development of improved models of intestinal epithelium.
454

Microgel Based Materials for Controlled Macromolecule Delivery

Nolan, Christine Marie 10 April 2005 (has links)
This dissertation focuses on utilization of poly(N-isopropylacylamide) (pNIPAm) based mirogels for regulated macromolecule drug delivery applications. There is particular emphasis on incorporation of stimuli responsive materials into multi-layer thin film constructs with the main goal being fabrication of highly functional materials with tunable release characteristics. Chapter 1 gives a broad overview of hydrogel and microgel materials focusing on fundamental properties of pNIPAm derived materials. Chapter 2 illustrates the progression of controlled macromolecule release from hydrogel and microgel materials and sets up the scope of this thesis work. Chapter 3 details studies on thermally modulated insulin release from microgel thin films where extended pulsatile release capabilities are shown. Chapters 4 and 5 focus on more fundamental synthesis and characterization studies of PEG and acrylic acid modified pNIPAm microgels that could ultimately lead to the design of protein loaded microgel films with tunable release characteristics. Chapter 6 illustrates fundamental macromolecule loading strategies, which could also prove useful in future protein drug delivery design using stimuli responsive networks. Chapter 7 concentrates on direct insulin release studies that probe the interaction between entrapped and freely diffusing protein and microgels. These model experiments could prove useful in design of tunable macromolecule drug release from functionally modified microgels and could aid in the tailored design of peptide-loaded microgel thin films. Chapter 8 discusses the future outlook of controlled macromolecule release from microgel based materials.
455

Synthesis and characterization of covalently-linked dendrimer bioconjugates and the non-covalent self-assembly of streptavidin-based megamers

McLean, Megan Elizabeth 17 February 2005 (has links)
This work details the attachment of dendrimers to proteins, peptides and single stranded DNA (ssDNA). Dendrimers based on melamine satisfy many of the synthetic demands in the field of bioconjugate chemistry including: monodispersity, synthetic flexibility and scalability. The solution-phase syntheses of both ssDNA-dendrimer and peptide-dendrimer bioconjugates is described, and thorough characterization by matrix-assisted laser desorption ionization/ time-of-flight (MALDI-TOF) mass spectrometry, UV-vis spectroscopy, fluorescence spectroscopy, and polyacrylamide gel electrophoresis is discussed. Non-covalent DNA-dendrimer complexes have been shown to facilitate antisense gene delivery, but are vulnerable to dissociation and subsequent enzymatic degradation within the cell. In an effort to prepare biocompatible antisense agents capable of effectively shielding ssDNA from intracellular nuclease digestion, disulfide-linked ssDNA-dendrimers were prepared and rigorously characterized to rule out the possibility of an electrostatic-based interaction. Hybridization assays were performed to determine if the covalently-attached dendrimer affected the ability of the attached ssDNA strand to anneal with a complementary sequence to form double-stranded DNA (dsDNA)-dendrimers. Results indicate that ssDNA-dendrimer conjugates readily anneal to complementary ssDNA strands either in solution or attached to gold surfaces. Nuclease digestions of conjugates in solution suggested that enzymatic manipulation of dsDNA-dendrimers is possible, offering promise for DNA-based computation and other fields of DNA-nanotechnology. Much larger bioconjugates consisting of dendrimers, proteins and peptides were prepared with the goal of obtaining molecular weights sufficient for enhanced permeability and retention (EPR) in tumors. While the dendrimer provides the advantages of a purely synthetic route for drug delivery, the protein portion of the bioconjugate provides a monodisperse, macromolecular scaffold for the non-covalent self-assembly of the dendrimers. The strategy presented herein is based on the strong interaction between biotin and the 60 kD tetrameric protein streptavidin. Each monomer of streptavidin is capable of binding 1 biotin molecule, thus when biotin functionalized peptide-dendrimers are added to streptavidin they bind to form a cluster of dendrimers, or a megamer. The biotinylated peptides that link the dendrimers to the streptavidin core provide a way to actively target specific cell types for drug delivery. Megamer formation through the addition of tetrameric streptavidin was successful as indicated by MALDI-TOF, UV-vis titration and gel electrophoresis assays.
456

The design and synthesis of endosomal disruptive polymers /

Murthy, Niren. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 98-107).
457

Physical-mechanical and chemical properties of topical films produced by hot-melt extrusion /

Repka, Michael Andrew, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 286-299). Available also in a digital version from Dissertation Abstracts.
458

Development of self-assembled molecular structures on polymeric surfaces and their applications as ultrasonically responsive barrier coatings for on-demand, pulsatile drug delivery /

Kwok, Connie Sau-Kuen. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 260-285).
459

Polymeric microneedles for transdermal drug delivery

Park, Jung-Hwan, January 2004 (has links) (PDF)
Thesis (Ph. D.)--School of Biomedical Engineering, Georgia Institute of Technology, 2004. Directed by Mark R. Prausnitz. / Includes bibliographical references (leaves 184-193).
460

Magnetic drug targeting Development of a novel drug delivery system for prostate cancer therapy/

Rahimi, Maham. January 2008 (has links)
Thesis (Ph.D.) -- University of Texas at Arlington, 2008.

Page generated in 0.0697 seconds