Spelling suggestions: "subject:"drugs - etabolism."" "subject:"drugs - emetabolism.""
31 |
Développement et évaluation de mini-comprimés flottants à libération prolongée / Development and evaluation of sustained-release floating minitabletsGoole, Jonathan 02 July 2008 (has links)
Parmi toutes les voies d’administration, la voie orale a toujours suscité un grand intérêt. Les formes prises par voie orale présentent une grande facilité d’administration pour le patient, tandis que pour les chercheurs, la physiologie du système gastro-intestinal peut être facilement modélisable. Malheureusement, son importante variabilité, liée principalement au temps de vidange gastrique, peut conduire à une mauvaise reproductibilité des effets thérapeutiques et à une diminution de la biodisponibilité. Ce problème est surtout rencontré dans le cas des principes actifs présentant une fenêtre d’absorption étroite au niveau de l’intestin supérieur [Deshpande et col. 1996]. Une solution a été de développer des formes galéniques à libération prolongée caractérisées par un temps de résidence gastrique accru. Ainsi, le principe actif est libéré progressivement en amont de sa fenêtre d’absorption. Dans cette optique, plusieurs systèmes ont été développés :des formes bioadhésives, expansibles, gonflantes ou à hautes densités [Singh et Kim, 2000]. Mais parmi toutes ces formes, ce sont les systèmes flottants qui semblent offrir la protection la plus efficace contre une vidange gastrique précoce [Moës, 1989]. Seth et Tossounian ont ainsi développé une gélule flottante à libération prolongée, basée sur le gonflement d’un dérivé cellulosique. Etant une forme monolithique, sa vidange gastrique était soumise au phénomène de tout ou rien. De plus, cette forme présentait un inconvénient majeur puisqu’elle était sujette à des fractionnements intra-gastriques, diminuant de ce fait la reproductibilité inter- et intra-individuelle [Seth et Tossounian, 1984]. <p>\ / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
32 |
Mechanisms and quantitative prediction of Efavirenz metabolism, pharmacogenetics and drug interactionsXu, Cong 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The antiretroviral drug efavirenz remains a cornerstone for treatment-naïve HIV patients. Subsequent to the demonstration that efavirenz is a substrate of cytochrome P450 (CYP) 2B6, a number of clinical studies found that the CYP2B6*6 allele is significantly associated with higher efavirenz exposure and/or adverse reactions. However, the mechanism of reduced efavirenz metabolism by this genetic variant is not fully understood and whether this variant exhibits differential susceptibility to metabolic inhibition is also unknown. Ths use of efavirenz is further complicated by the drug interactions associated with it. Therefore, I hypothezised that 1) the CYP2B6*6 allele reduces efavirenz metabolism by altering catalytic properties of CYP2B6; 2) efavirenz alters the pharmacokinetics of co-administered drugs by inhibiting drug metabolizing enzymes. A series of studies was carried out in hepatic microsomal preparations to determine the functional consequences of the CYP2B6*6 allele and to assess inhibition potency of efavirenz on 8 CYPs. The major findings for these studies include: 1) the CYP2B6*6 allele reduces efavirenz metabolism by decreasing substrate binding and catalytic efficiency; 2) functional consequences of the CYP2B6*6 allele appear to be substrate- and cytochrome b5-dependent; 3) the CYP2B6*6 allele confers increased susceptibility to metabolic inhibition; and 4) efavirenz inhibits the activities of CYP2B6, 2C8, 2C9 and 2C19 at therapeutically relevant concentrations. In addition, I explored the hypothesis that the incorporation of in vitro mechanism by which the CYP2B6*6 allele
reduced efavirenz metabolism predicts the genetic effect of this allele on efavirenz clearance after a single oral dose by modeling approach. A pharmacogenetics-based in vitro-in vivo extrapolation (IVIVE) model was developed to predict human efavirenz clearance. Taken together, results from this dissertation provide new mechanistic information on how the CYP2B6*6 allale alters substrate metabolism and drug interactions; demonstrate new mechanisms of efavirenz-mediated inhibition interactions; and demonstrate the utility of a pharmacogenetics-based predictive model that can serve as a basis for future studies with efavirenz and other CYP2B6 substrates. Overall these data provide improved understanding of genetic and non-genetic determinant of efavirenz disposition and drug interactions associated with it.
|
33 |
Développement de méthodes électroanalytiques hybrides pour l'étude de la biotransformation des médicaments / Development of hybrid electroanalytical methods devoted to drug biotransformation predictionBlankert, Bertrand 18 April 2006 (has links)
Le thème principal de notre travail consistait en la mise en exergue de l'efficience de la mise en œuvre de techniques hybrides associant l’électrochimie à l’élément biologique (biocapteur) ou l’électrochimie aux performances de la spectrométrie de masse (couplage EC-MS). Les informations fournies, jointes aux résultats des mesures en voltampérométrie sur électrodes solides, permettent une bonne compréhension mécanistique quant au devenir oxydatif de substances médicamenteuses. <p>Notre champ d'investigation s'est plus spécifiquement focalisé sur deux familles de molécules psychotropes (les phénothiazines, et une dibenzoazépine). Celles-ci connaissent un usage thérapeutique intensif et un regain d’intérêt pour des applications nouvelles, mais leur utilisation optimale souffre de l’existence d'effets secondaires physiopathologiques importants et dont l’étiologie est encore mal connue. <p>En premier lieu, les résultats de la voltampérométrie cyclique et les différentes modulations en ligne d'une cellule électrochimique couplée à la détection par spectrométrie de masse, nous ont permis de mettre en évidence des différences essentielles dans le devenir des phénothiazines quant aux produits d'oxydations générés. Plus précisément, un comportement clairement distinct entre les phénothiazines garnies de deux (2C) ou trois carbones (3C) entre les deux azotes au niveau de leur chaîne latérale a pu être mis en évidence. Les phénothiazines 3C s'oxydent de manière classique en leur sulfoxyde correspondant. Par contre, les phenothiazines 2C, conjointement à la formation de leur sulfoxyde, souffrent dans des conditions énergiques d’oxydation (persulfate, potentiel élevé) d'une rupture de la chaîne latérale et libèrent la phénothiazine base aisément oxydable et donc subissant elle-même une oxydation. Au vu des structures moléculaires en trois dimensions, nous émettons l’hypothèse que volume trop important de la chaîne latérale des phénothiazines 2C empêcherait le déploiement aisé des structures aromatiques en un radical cation coplanaire lors du phénomène d'oxydation. Les tensions intrastructurelles apparues conduiraient au bris de la chaîne latérale. Différents modes d'oxydation (chimique, électrochimique, enzymatique) ont été utilisés et laissent chacun apparaître la dépendance directe entre la puissance de l'agent oxydant appliqué et les produits d'oxydation obtenus. Chaque technique de détection, de manière individuelle, a bien confirmé la dualité entre les deux groupes de molécules. La mise en commun des divers résultats nous a permis l'identification irrévocable des espèces intermédiaires instables et des composés finaux. Par corollaire, nous avons pu postuler un schéma général d'oxydation pour les dérivés phénothiaziniques. Il nous paraît intéressant de transposer nos résultats aux biotransformations des phénothiazines car les produits identifiés ne possèdent pas l'activité pharmacologique du composé parent mais présentent un profil toxicologique bien répertorié dans la littérature. Nos résultats suggèrent d’approfondir les études de biotransformation afin de déterminer si ‘l’éclatement’ oxydatif des phénothiazines 2C est également observé in vivo. Une relation cause/effet de ces métabolites pourrait ainsi être établie. <p>En deuxième point, au travers de l'association CE/SM ou CE/CL/SM, nous avons étudié l’électroxydation de la clozapine. La génération et l'identification des principaux métabolites de phases I et II, illustre un mimétisme certain avec le CYP450, et nous a permis de confirmer de nombreuses données de la littérature quant à l'oxydation in vivo et in vitro de la clozapine. L'oxydation électrochimique ne génère cependant pas l'ensemble des réactions de métabolisation prises en charge par le système CYP450. Lors de la combinaison CE/SM, par l'absence de séparation chromatographique dans cette configuration, le spectre de masse présente un pic correspondant à un intermédiaire à demi-vie courte, difficilement et rarement mis en évidence: l'ion nitrénium. Cette espèce hautement réactive envers les fonctions thiols des petites molécules et des protéines, se trouve très régulièrement tenue pour responsable majeur de la toxicité avérée de la clozapine. <p>L'apparition plus abondante de dérivés déméthylés démontre l'influence du potentiel appliqué à l'électrode de travail lors de l'oxydation électrochimique. En effet, les processus de déméthylation nécessitent des potentiels élevés pour être observés. En présence de glutathion, aux différents pics antérieurement identifiés, des pics supplémentaires relatifs à la formation d'adduits de GSH sur la CLZ apparaissent. Les courbes voltampérométriques réalisées sur la clozapine suggèrent la distinctement la formation de l'ion nitrénium et d'une nouvelle espèce aisément électroréduite, probablement une structure quinone imine. L'addition de GSH provoque la disparition des pics de réduction de la CLZ. Ces comportements en VC corroborent les interprétations issues des mesures par couplage EC/CL/SM. <p>La dernière partie de notre travail a consisté en la construction d'un biocapteur à pâte de carbone solide avec inclusion au sein de cette matrice de peroxydase de raifort. Basé sur la capacité reconnue de l'HRP à reproduire in vitro des produits d'oxydation similaires à la métabolisation in vivo, nous avons exploité un tel biocapteur pour l'analyse de la clozapine et de composés thiols. Une compréhension fine du mécanisme opérationnel intrinsèque du biocapteur a pu être suggérée. La génération à la surface de l'électrode de l'ion nitrénium par oxydation enzymatique de la clozapine par l'HRP, suivie de sa réduction immédiate fournit un courant ampérométrique substantiel. Sous des conditions de pH optimales, ce courant de réduction autorise la détermination quantitative de la clozapine dans un domaine de linéarité compris entre 1 x 10-5 M et 1 x 10-6 M. L'addition de composés thiols dans le milieu occasionne une chute de courant par action de ceux-ci sur la structure radical cation ou nitrénium par addition nucléophile. La disparition de l'ion nitrénium et la formation d'un adduit GSH-CLZ inhibent tout processus de réduction à l'électrode du biocapteur. Cette diminution de courant proportionnelle aux concentrations en thiols introduits, permet la détermination quantitative de dérivés thiols. Les courbes de calibration exprimées en pourcentage d'inhibition conduisent facilement à l'évaluation de la constante d'inhibition (Ki) et de CI50. L'étude de la réponse ampérométrique de la clozapine à l'EPC/HRP en l'absence ou présence d'un dérivé thiol envisagé permet la détermination de Km et de caractériser le type d'inhibition qui entre en jeu. De tels paramètres cinétiques nous ont habilités à classer les thiols considérés en fonction de leur puissance réactionnelle envers les substances oxydées de la clozapine.<p><p>Au terme de ce travail, nous espérons avoir illustré, par l’étude de quelques molécules modèles, l’intérêt de la mise en œuvre des techniques électrochimiques couplées à l’élément biologique ou à la spectrométrie de masse. Des améliorations au niveau de la cellule électrochimique sont envisageables par l’emploi d’électrodes modifiées, elles laissent entrevoir la possibilité de mimer totalement le système CYP450.<p>Les résultats fournis par ces techniques hybrides et par voltampérométrie cyclique sont complémentaires, ils procurent un éventail d'informations d'une utilité estimable pour une application dans des études prédictives précoces de candidats médicament. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
34 |
Identification and mechanistic investigation of clinically important myopathic drug-drug interactionsHan, Xu January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Drug-drug interactions (DDIs) refer to situations where one drug affects the pharmacokinetics or pharmacodynamics of another. DDIs represent a major cause of morbidity and mortality. A common adverse drug reaction (ADR) that can result from, or be exacerbated by DDIs is drug-induced myopathy. Identifying DDIs and understanding their underlying mechanisms is key to the prevention of undesirable effects of DDIs and to efforts to optimize therapeutic outcomes. This dissertation is dedicated to identification of clinically important myopathic DDIs and to elucidation of their underlying mechanisms. Using data mined from the published cytochrome P450 (CYP) drug interaction literature, 13,197 drug pairs were predicted to potentially interact by pairing a substrate and an inhibitor of a major CYP isoform in humans. Prescribing data for these drug pairs and their associations with myopathy were then examined in a large electronic medical record database. The analyses identified fifteen drug pairs as DDIs significantly associated with an increased risk of myopathy. These significant myopathic DDIs involved clinically important drugs including alprazolam, chloroquine, duloxetine, hydroxychloroquine, loratadine, omeprazole, promethazine, quetiapine, risperidone, ropinirole, trazodone and simvastatin. Data from in vitro experiments indicated that the interaction between quetiapine and chloroquine (risk ratio, RR, 2.17, p-value 5.29E-05) may result from the inhibitory effects of quetiapine on chloroquine metabolism by cytochrome P450s (CYPs). The in vitro data also suggested that the interaction between simvastatin and loratadine (RR 1.6, p-value 4.75E-07) may result from synergistic toxicity of simvastatin and desloratadine, the major metabolite of loratadine, to muscle cells, and from the inhibitory effect of simvastatin acid, the active metabolite of simvastatin, on the hepatic uptake of desloratadine via OATP1B1/1B3. Our data not only identified unknown myopathic DDIs of clinical consequence, but also shed light on their underlying pharmacokinetic and pharmacodynamic mechanisms. More importantly, our approach exemplified a new strategy for identification and investigation of DDIs, one that combined literature mining using bioinformatic algorithms, ADR detection using a pharmacoepidemiologic design, and mechanistic studies employing in vitro experimental models.
|
35 |
Modeling and simulation applications with potential impact in drug development and patient careLi, Claire January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Model-based drug development has become an essential element to potentially make drug development more productive by assessing the data using mathematical and statistical approaches to construct and utilize models to increase the understanding of the drug and disease. The modeling and simulation approach not only quantifies the exposure-response relationship, and the level of variability, but also identifies the potential contributors to the variability. I hypothesized that the modeling and simulation approach can: 1) leverage our understanding of pharmacokinetic-pharmacodynamic (PK-PD) relationship from pre-clinical system to human; 2) quantitatively capture the drug impact on patients; 3) evaluate clinical trial designs; and 4) identify potential contributors to drug toxicity and efficacy. The major findings for these studies included: 1) a translational PK modeling approach that predicted clozapine and norclozapine central nervous system exposures in humans relating these exposures to receptor binding kinetics at multiple receptors; 2) a population pharmacokinetic analysis of a study of sertraline in depressed elderly patients with Alzheimer’s disease that identified site specific differences in drug exposure contributing to the overall variability in sertraline exposure; 3) the utility of a longitudinal tumor dynamic model developed by the Food and Drug Administration for predicting survival in non-small cell lung cancer patients, including an exploration of the limitations of this approach; 4) a Monte Carlo clinical trial simulation approach that was used to evaluate a pre-defined oncology trial with a sparse drug concentration sampling schedule with the aim to quantify how well individual drug exposures, random variability, and the food effects of abiraterone and nilotinib were determined under these conditions; 5) a time to event analysis that facilitated the identification of candidate genes including polymorphisms associated with vincristine-induced neuropathy from several association analyses in childhood acute lymphoblastic leukemia (ALL) patients; and 6) a LASSO penalized regression model that predicted vincristine-induced neuropathy and relapse in ALL patients and provided the basis for a risk assessment of the population. Overall, results from this dissertation provide an improved understanding of treatment effect in patients with an assessment of PK/PD combined and with a risk evaluation of drug toxicity and efficacy.
|
Page generated in 0.0396 seconds