• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 53
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Soil Modulation of Ecosystem Response to Climate Forcing and Change Across the US Desert Southwest

Shepard, Christopher January 2014 (has links)
The dryland ecosystems of the US Desert Southwest (SW) are dependent on soil moisture for aboveground productivity; the generation of soil moisture in the SW is dependent on both soil physical properties and climate forcing. This study is one of the first regional point-scale analyses that explores the role of soil physical properties in modulating aboveground vegetation dynamics in response to climate forcing in the SW. Soil texture accounted for significant differences in average aboveground primary productivity across the SW. However, soil texture could not account for differences in inter-annual aboveground productivity variation across the SW. Subsurface soil texture was tightly coupled with precipitation seasonality in accounting for differences in long-term average seasonal aboveground productivity in the Mojave and Sonoran Deserts. The results of this study indicate that the subsurface is a significant factor in modulating aboveground primary productivity, and needs to be included in future modeling exercises of dryland ecosystem response to climate forcing and change.
22

An optimization study of integrated agriculture production systems for meeting household food, fodder and fuel demands : a case study in the dryland region of India

Ralevic, Peter 25 June 2008 (has links)
For the nearly 70% of India’s population of 1.2 billion who reside in rural villages, agriculture is often the primary source of income, as well as of food, fodder and fuel. Rural agricultural systems are recognized as complex mixed-cropping-livestock systems, whereby primary and secondary products from one component of the system are used in another. For instance, primary products such as grain and milk from livestock can be used for human consumption, while secondary products such as crop residues can be used as fodder or fuel, while manure finds use as fertilizer. Variations in cropping pattern and intensity will determine the production potential of food, fodder and fuel within a region. As limiting factors, land area and yield must also be considered in agricultural planning activities. The present research aims to develop a rational method for crop selection within a particular agro-ecoregion. An optimization model is constructed to optimize for selected parameters that are set to maintain defined basic minimum standards for human nutritional and livestock fodder demands. An agricultural survey was carried out in 2007 for three villages in Karnataka State, India. All three villages were located within the dryland agro-ecozone, where crop yields are relatively low. The survey was stratified according to household landholding area ranging from marginal (0-1 ha) to large (>4 ha). Information was solicited on the demographic indicators of the population, the cropping cycle and cropping varieties used within the regions, and certain livestock parameters were gathered. Various demands, such as human food energy and protein requirements as well as fodder, and constraints, such as land area, were modeled to determine the potential for food, fodder and fuel production under optimal cropping pattern. The linear programming software, What’sBest, Version 9.0 from LINDO systems, was used to solve the optimization model. Results indicate that the current export-driven cropping pattern produces inadequate food to satisfy human nutritional demands at the village level, particularly among marginal and small households, who produce in the range of only 10 and 50 % of required food energy and protein, respectively, on a household basis. The current cropping pattern is also inadequate to satisfy village-wide livestock fodder demand, especially in villages heavily centered on cash crops,wherein only 30-40 % of fodder demand can be accounted for. On an individual household level, it is determined that a minimum 0.8 ha of land area is required to satisfy both food and fodder demands, placing strain on marginal households, who own less then 1 ha of land. The optimization model also demonstrates that it is possible to produce adequate food and fodder for both human and livestock consumption within the land area available in all the villages, if between 30-60% of land area is cultivated with food-based crops used for village wide consumption. This would require diversion of between 50 and 90 % of current land area under oilseeds and commercial crops to cereal based crops. In villages that cultivate sufficient proportion of cereal and pulse based food crops, as little as 4 % diversion of crops towards cereals may be necessary. Results also indicate that double cropping systems can generate crop residues sufficient to provide fuel for generation of 2.6-11.3 kWh/hh/day of electricity, adequate for cooking and lighting; this could be done at the same time as providing enough primary product to satisfy food and fodder needs. / Thesis (Master, Environmental Studies) -- Queen's University, 2008-06-24 16:12:50.1
23

Ecosystem Services Based Evaluation Framework of Land-use Management Options for Dryland Salinity in the Avon Region, Western Australian Wheatbelt

Kleplova, Klara Zoe January 2014 (has links)
Dryland-salinity management options aim to positively influence the adverse human-induced processes which lead to salinisation of top-soil. Specifically, the processes causing dryland-salinity are rising saline groundwater table and soil erosion. In the Avon region of Western Australia, the management options are evaluated solely on the basis of their efficiency in lowering groundwater tables. However, recently the need to take into account also their wider impact on the ecosystems' resilience has been recognised as well. Nevertheless, the tool to assess these impacts is missing. The aim of this thesis is to synthesise the missing tool from existing ecosystem services-based land-use evaluation frameworks, which would fit the environmental issue, regional socio-economic demands and the existing dryland salinity management options' efficiency evaluation framework. The thesis builds on secondary data and describes (i) the environmental issue of dryland salinity in Australia, (ii) the dryland salinity-environmental, economic, social and political environments of the Avon region, and (iii) five chosen evaluation frameworks which assess the impact of land-use on ecosystem resilience. The proposed optimal framework for the Avon region is then a combination of two existent frameworks: (i) ecosystem resilience evaluation framework & (ii) the ecosystem services economic valuation framework. Where the inputs of the proposed optimal framework are: (i) soil properties, (ii) external natural and anthropogenic drivers and (iii) beneficiaries; the transfer phase is represented by the soil processes; and the output of the framework are (i) ecosystem services and (ii) their economically valued benefits.
24

Crop water production functions for grain sorghum and winter wheat

Moberly, Joseph January 1900 (has links)
Master of Science / Agronomy / Robert Aiken / Xiaomao Lin / Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. The research objective was to develop relationships among weather parameters, water use, and grain productivity to produce production functions to forecast grain yields of grain sorghum and winter wheat in water-limited cropping systems. Algorithms, defined by the Kansas Water Budget (KSWB) model, solve the soil water budget with a daily time step and were implemented using the Matlab computer language. The relationship of grain yield to crop water use, reported in several crop sequence studies conducted in Bushland, TX; Colby, KS and Tribune, KS were compared against KSWB model results using contemporary weather data. The predictive accuracy of the KSWB model was also evaluated in relation to experimental results. Field studies showed that winter wheat had stable grain yields over a wide range of crop water use, while sorghum had a wider range of yields over a smaller distribution of crop water use. The relationship of winter wheat yield to crop water use, simulated by KSWB, was comparable to relationships developed for four of five experimental results, except for one study conducted in Bushland that indicated less crop water productivity. In contrast, for grain sorghum, experimental yield response to an increment of water use was less than that calculated by KSWB for three of five cases; for one study at Colby and Tribune, simulated and experimental yield response to water use were similar. Simulated yield thresholds were consistent with observed yield thresholds for both wheat and sorghum in all but one case, that of wheat in the Bushland study previously mentioned. Factors in addition to crop water use, such as weeds, pests, or disease, may have contributed to these differences. The KSWB model provides a useful analytic framework for distinguishing water supply constraints to grain productivity.
25

A feira de Capuame. Pecuária, territorialização e abastecimento (Bahia, século XVIII) / Capuame\'s cattle fair. Livestock, territorialization and supply (Bahia, XVIII century)

Juliana da Silva Henrique 10 December 2014 (has links)
Esta investigação tem como principal objeto uma feira de gado localizada próxima a Cidade da Bahia de Todos os Santos: Capuame. Embora a feira fosse constantemente citada pela historiografia como uma das mais importantes do período setecentista, sabia-se muito pouco sobre sua existência. Não havia até o momento estudos a seu respeito fundamentados em consistente base documental. Assim, o primeiro objetivo desta pesquisa é preencher uma lacuna historiográfica, dedicando parte da dissertação ao estudo da primeira feira de gado da América Portuguesa. Compreender sua dinâmica de funcionamento em contexto colonial, analisar a sua relação com o processo de territorialização dos sertões baianos através da produção da mercadoria gado e a simultânea conexão com um dos principais portos e praças comerciais do Atlântico Sul são aspectos fundamentais para redimensionar a importância da pecuária para a reprodução da economia e da sociedade colonial. / The main object of this investigation is a cattle fair located near the Cidade da Bahia de Todos os Santos: Capuame. Although the fair has been constantly quoted by historiography as one of the most important of the eighteenth century, very little was known about its existence. There had not been any studies based on consistent document analysis. Thus, our first goal has been to fill in a historiographical gap, dedicating part of this thesis to the study of Portuguese America\'s first livestock fair. To understand its functioning dynamics in a colonial context, to analyse its relationship with the process of Bahia\'s sertões (dryland) territorialisation through the production of cattle industry as goods and the simultaneous connection with one of South Atlantic\'s main seaports as well as commercial squares are all fundamental aspects to redimension the importance of livestock breeding for the reproduction of the colonial society and economy.
26

Corn and weed interactions with nitrogen in dryland and irrigated environments

Ruf, Ella Kathrene January 1900 (has links)
Master of Science / Department of Agronomy / Johanna A. Dille / Corn yield potential is limited by water deficit stress and limited soil nitrogen. Field and greenhouse experiments were conducted near Manhattan, KS in 2005 and 2006. The field experiment evaluated the influence of nitrogen (N) rate and increasing Palmer amaranth (PA) density grown alone and in competition with corn in two moisture environments. In 2006 the dryland environment was very drought stressed, while 2005 had more intermediate conditions. Weed-free corn yields were approximately half in dryland environments compared to the irrigated environment across years. Increasing PA density increased corn yield loss similarly in both 2005 environments and in 2006 dryland environment across all N rates. In the 2006 irrigated environment corn yield loss was increased by decreasing N rate and increasing PA density. Maximum predicted yield loss at high PA densities in both 2005 environments was 20-54% while in 2006 dryland environment, maximum yield loss was 95% and in the irrigated environment was 62%. In general, soil moisture environment was more critical than N rate or PA density when determining potential corn yield. In the greenhouse study a factorial arrangement of two irrigation methods and five crop-weed combinations (corn, PA, GF, corn/PA, and corn/GF) was established with two replications and three runs conducted. Two plants were grown in 25.4 cm diameter PVC pipe cut into 91.5 cm lengths. Irrigation application method included a surface and subsurface application. Plants were harvested at the V10 corn growth stage. No differences were detected between irrigation methods with respect to above- or below ground biomass production. Corn aboveground biomass was decreased by the presence of corn or PA but not GF. Below ground biomass information was presented as column totals because species could not be separated. There was no impact on root to shoot ratio, total below ground biomass, rooting depth, or root area across the crop-weed combinations except for the GF monoculture columns which were lower than all other crop-weed combinations. Future research needs to examine the light interception of corn and PA when grown at different N rates along with examining the influence of surface and subsurface irrigation practices on crop weed interactions and weed seed germination in a field setting.
27

Cropping system effects on soil water, soil temperature and dryland maize productivity

Mampana, Reedah Makgwadi January 2014 (has links)
Improved soil water conservation has become an important subject in semi-arid areas due to low and erratic rainfall which is often combined with higher temperatures to provide unsuitable conditions for successful crop productivity. Dryland agriculture remains vulnerable to yield losses in these areas. This calls for implementation of conservation agricultural practices that would improve dryland maize productivity. An on-station field trial was started in 2007 at Zeekoegat experimental farm (24 kilometers north of Pretoria), to establish the effect of different conservation agriculture practices on soil and plant properties. The experimental lay-out was a split-plot randomized complete block design, replicated three times, with each replicate split into two tillage systems (whole plots) and then each whole plot (reduced tillage (RT) and conventional tillage (CT)) was subdivided into 12 treatments (two fertilizer levels x 6 cropping patterns). The present study explored the impacts of different tillage practices, cropping patterns and fertilization levels on soil water content, soil temperature and dryland maize productivity during the 2010/11 and 2011/12 growing seasons. To improve the quality of soil water content (SWC) data, the effect of correction for concretions on soil bulk density and the relationship between volumetric soil water content (SWC) vs neutron water meter (NWM) count ratios was also investigated. Corrections for concretions on soil bulk density did not improve NWM calibrations in this study. In all seasons, significantly higher mean SWC was found under RT treatment than in CT at all depths except at 0-300 mm. For example, during the 2010/11 growing season, SWC under RT was 1.32 % and 1.10 % higher than CT for the 300 – 1350 mm and 0 – 1350 mm soil profiles, respectively. The mean weekly SWC was consistently higher for RT throughout both the growing seasons. Significantly higher SWC was also found under monoculture at all soil depths (except at 0-300 mm during 2011/12) compared to treatments under intercropping. For example, during 2010/11, at 0-300mm, SWC under maize monoculture was 1.72 % higher than under intercropping. The maximum and minimum soil temperatures were significantly higher at 100 and 400 mm soil depths under CT than under RT during 2010/11. During 2011/12, significantly higher minimum soil temperatures at 100 mm depth and lower temperature differences (maximum – minimum soil temperatures) at 400 mm depth were observed under intercropping. Despite the higher SWC and reduced soil temperature under RT, the maize seeds emergence rate was lower and plant stand was reduced. This is attributed to other factors associated with RT systems such as increased soil penetration resistance which often leads to poor root development. The lower soil temperatures under RT were generally within the range that would not be expected to inhibit growth and uptake of nutrients. Slower growth under RT resulted in lower biomass and grain yield. Plants that received high fertilizer rates grew more vigorously than plants under lower fertilizer levels when water was not a limiting factor, but produced lower grain yield due to water shortage in March, especially in 2011/12. The harvest index was therefore lower for treatments that received high fertilizer levels. Maize biomass under monoculture x low fertilizer level was significantly lower compared to other fertilizer x cropping pattern treatments. Maize plant growth under intercropping was improved throughout the seasons, which led to significantly higher grain yield than under maize monoculture. It is therefore recommended that farmers in dryland areas take the advantage of intercropping maize with legumes to obtain higher maize productivity. Further research should focus on investigating the possibility of roots restrictions occurring under RT conditions and under various environmental and soil conditions. / Dissertation (MScAgric)--University of Pretoria, 2014. / lk2014 / Plant Production and Soil Science / MScAgric / Unrestricted
28

Pre-Columbian Cultivation of Agave Species Through Rock Mulching: Potential for Modern Applications

Ortiz Cano, Hector Genaro 30 July 2021 (has links)
As global temperatures rise, cultivation of C3 and C4 crops in arid and semi-arid regions will face major challenges in producing biomass for billions of people. Conventional agricultural techniques that require copious irrigation will need to be complemented with dryland-farming techniques and drought-tolerant crops, such as those from the Agave genus, which use CAM photosynthesis. In the past and present, humans from arid and semi-arid regions of America have maintained a symbiotic relationship using and cultivating Agave (Agavoideae, Asparagaceae). In pre-Columbian times, Native Americans from arid regions relied on Agave cultivation as a subsistence crop to produce food, medicine, and fiber. The Hohokam in the Sonoran Desert cultivated Agave plants using rock mulching, also known as rock piles. This technique enabled the Hohokam to extensively cultivate Agave despite the limited rainwater available in the harsh Sonoran Desert. Although there are several decades of archaeological research for documenting the history of rock piles and Agave in the region beginning in the late 1970s, few studies have addressed the modern application of rock piles to cultivate Agave. Our research employed a multidisciplinary approach to bridge the historic use of rock piles to cultivate Agave with the potential application of rock piles for modern cultivation. In addition to summarizing what is known about the archaeology of Hohokam rock piles, we compiled an extensive review of the literature available on the agroecology, physiology, and natural history of Agave. We described key aspects associated with the hydrology and physical properties of Hohokam rock piles that can bolster Agave CAM photosynthesis in dry regions. We found that the use of rock piles is a feasible means of cultivating Agave under hot and dry conditions in arid regions. In addition, we used an ecological niche modeling approach and field data from Hohokam rock-pile sites and current Agave fields to assess the potential environments where rock piles could be used to cultivate Agave plants in Arizona, USA and Sonora, Mexico. We also combined an experimental archaeology approach with experimental plant physiology where we surveyed Hohokam rock-pile fields at archaeological sites to collect information about the composition of rock piles. We then created a rock-pile field where we evaluated and observed the effects of rock piles on Agave CAM utilization, mainly nocturnal CO2 uptake of Agave. Our results indicated that rock piles provide direct insulation to root systems, which indirectly benefited Agave carbon uptake and reduced temperature and drought stress. Although more agronomic research about rock pile use is needed, our research suggests that rock piles can be applied to cultivate Agave because of the physiological benefits provided such as increasing nocturnal total CO2 uptake. In addition, the suitability of rock piles in the U.S borderlands indicates that rock piles can be applied beyond the regions where they were used by the Hohokam in pre-historic times.
29

Nitrogen Fertilization Studies in Dryland Winter Wheat and Potential Nitrogen Losses from the Soil at the Blue Creek Experimental State in Northern Utah

Intalap, Subhawat 01 May 1976 (has links)
This study compared the effects of nitrogen sources on the available inorganic soil nitrogen, nitrogen movement, nitrogen losses, and wheat yields when nitrogen fertilizers were applied to soil planted to dryland winter wheat at the Blue Creek Experimental Station in northern Utah. In the fall 1973 soil samplings, the fertilizers producing the largest mineral nitrogen contents in the 0-30 cm soil depths were ammonium nitrate >ammonium sulfate > S-coated urea, when they were broadcast at the practical rate of 56 kg N/ha. There was no increase in the mineral nitrogen at the dee per depths in the fall or at any depth in the following spring. Statistically, the three nitrogen sources did not increase grain yield significantly but did increase grain protein content and nitrogen content in grain. Ammonium nitrate and potassium bromide at the rates of 400 kg N and 200 kg Br/ha were broadcast to soil planted to winter wheat in October 1974. Nitrate-nitrogen and bromide distribution patterns in the soil profile looked alike in May 1975. These showed that their movements were similar. Considerable nitrate-nitrogen (35 percent of the added nitrogen) had moved down below the 120 cm depth. The highest nitrate-nitrogen concentrations were found at the 45 to 90 cm depth. There seems to be evidence that nitrate-nitrogen and bromide had moved deeper than the 150 cm depth. Ammonia-nitrogen losses from nitrogen fertilized soils were conducted in the laboratory. Ammonium sulfate, ammonium nitrate, or urea applied to the soil surface lost ammonia-nitrogen differently. From noncolcoreous soil, the ammonia-nitrogen loss was greatest from urea. From calcareous soil or soils receiving carbonates or high soil pH by the addition of sodium hydroxide solution, the greatest losses were from ammonium sulfate. High losses were favored by high temperatures and longer periods of moist soil. The total amounts of water lost from the soil was not closely related to the total ammonia-nitrogen loss during two weeks. No loss of ammonia-nitrogen occurred when nitrogen fertilizers were applied at a 2.5 em depth or deeper. The ammonia-nitrogen losses were also greatly reduced when nitrogen fertilizers applied to the soil surface was followed by irrigation or heavy rainfall. In the field, the higher temperatures increased the ammonia-nitrogen losses from ammonium sulfate, ammonium nitrate, and urea when applied to both a noncalcareous and a calcareous soil. However, the loss from calcareous soil was reduced by irrigation following fertilizer application. No ammonia-nitrogen was observed when ammonium sulfate was applied to o 2.5 cm soil depth, despite of the high soil temperature during the day time in moist soil. Rapid drying of the moist soil surface quickly reduced the losses per day.
30

Optimal Compost Rates for Organic Crop Production Based on a Decay Series

Endelman, Jeffrey B. 01 May 2009 (has links)
One of the more challenging aspects of organic farming is the development of an appropriate fertility plan, which may include crop rotation, cover crops, and/or soil amendments. When fertility is maintained by applying manure and/or compost, a pressing question is how much should be used. A framework was developed to address this question based on the idea of a decay series, which is a sequence of numbers quantifying the effects of compost on crop yield over a multi-year period. Prior research has focused on decay series expressed in nitrogen fertilizer equivalents. Given this information, I show how to calculate what manure/compost rates are needed to meet the nitrogen targets in a multi-crop rotation. Analogous results are presented for when the objective is profit rather than yield maximization. The planning framework is then generalized to include decay series where the carryover effects of manure/compost are measured, not against nitrogen fertilizer, but against new applications of the amendment. This change of basis, from nitrogen fertilizer equivalents to manure/compost equivalents, allows for field research on organically certified land and quantifies non-nutritive effects in a more meaningful way. Two case studies are presented to illustrate how this new type of decay series may be estimated and used to optimize crop production. By using data from a continuous corn (Zea mays L.) system amended with cattle manure slurry, the case study in estimation explores the methodological challenges that arise when the yield response to nitrogen fertilizer is not available as a benchmark. The case study in optimization looks at profit-maximizing compost rates for dryland, organic wheat (Triticum aestivum L.) in northern Utah.

Page generated in 0.0336 seconds