Spelling suggestions: "subject:"dvfs"" "subject:"vfs""
31 |
Dynamic CPU frequency scaling using machine learning for NFV applications. / Escalamento dinâmico de frequência da CPU usando aprendizado de máquina em aplicações NFV.Zorello, Ligia Maria Moreira 10 October 2018 (has links)
Growth in the Information and Communication Technology sector is increasing the need to improve the quality of service and energy efficiency, as this industry has already surpassed 12% of global energy consumption in 2017. Data centers correspond to a large part of this consumption, accounting for about 15% of energy expenditure on the Information and Communication Technology domain; moreover, the subsystem that generates the most costs for data center operators is that of servers and storage. Many solutions have been proposed to reduce server consumption, such as the use of dynamic voltage and frequency scaling, a technology that enables the adaptation of energy consumption to the workload by modifying the operating voltage and frequency, although they are not optimized for network traffic. In this thesis, a control method was developed using a prediction engine based on the analysis of the ongoing traffic. Machine learning algorithms based on Neural Networks and Support Vector Machines have been used, and it was verified that it is possible to reduce power consumption by up to 12% on servers with Intel Sandy Bridge processor and up to 21 % in servers with Intel Haswell processor when compared to the maximum frequency, which is currently the most used solution in the industry. / O crescimento do setor de Tecnologia da Informação e Comunicação está aumentando a necessidade de melhorar a qualidade de serviço e a eficiência energética, pois o setor já ultrapassou a marca de 12% do consumo energético global em 2017. Data centers correspondem a grande parte desse consumo, representando cerca de 15% dos gastos com energia do setor Tecnologia Informação e Comunicação; além disso, o subsistema que gera mais custos para operadores de data centers é o de servidores e armazenamento. Muitas soluções foram propostas a fim de reduzir o consumo de energia com servidores, como o uso de escalonamento dinâmico de tensão e frequência, uma tecnologia que permite adaptar o consumo de energia à carga de trabalho, embora atualmente não sejam otimizadas para o processamento do tráfego de rede. Nessa dissertação, foi desenvolvido um método de controle usando um mecanismo de previsão baseado na análise do tráfego que chega aos servidores. Os algoritmos de aprendizado de máquina baseados em Redes Neurais e em Máquinas de Vetores de Suporte foram utilizados, e foi verificado que é possível reduzir o consumo de energia em até 12% em servidores com processador Intel Sandy Bridge e em até 21% em servidores com processador Intel Haswell quando comparado com a frequência máxima, que é atualmente a solução mais utilizada na indústria.
|
32 |
Dynamic CPU frequency scaling using machine learning for NFV applications. / Escalamento dinâmico de frequência da CPU usando aprendizado de máquina em aplicações NFV.Ligia Maria Moreira Zorello 10 October 2018 (has links)
Growth in the Information and Communication Technology sector is increasing the need to improve the quality of service and energy efficiency, as this industry has already surpassed 12% of global energy consumption in 2017. Data centers correspond to a large part of this consumption, accounting for about 15% of energy expenditure on the Information and Communication Technology domain; moreover, the subsystem that generates the most costs for data center operators is that of servers and storage. Many solutions have been proposed to reduce server consumption, such as the use of dynamic voltage and frequency scaling, a technology that enables the adaptation of energy consumption to the workload by modifying the operating voltage and frequency, although they are not optimized for network traffic. In this thesis, a control method was developed using a prediction engine based on the analysis of the ongoing traffic. Machine learning algorithms based on Neural Networks and Support Vector Machines have been used, and it was verified that it is possible to reduce power consumption by up to 12% on servers with Intel Sandy Bridge processor and up to 21 % in servers with Intel Haswell processor when compared to the maximum frequency, which is currently the most used solution in the industry. / O crescimento do setor de Tecnologia da Informação e Comunicação está aumentando a necessidade de melhorar a qualidade de serviço e a eficiência energética, pois o setor já ultrapassou a marca de 12% do consumo energético global em 2017. Data centers correspondem a grande parte desse consumo, representando cerca de 15% dos gastos com energia do setor Tecnologia Informação e Comunicação; além disso, o subsistema que gera mais custos para operadores de data centers é o de servidores e armazenamento. Muitas soluções foram propostas a fim de reduzir o consumo de energia com servidores, como o uso de escalonamento dinâmico de tensão e frequência, uma tecnologia que permite adaptar o consumo de energia à carga de trabalho, embora atualmente não sejam otimizadas para o processamento do tráfego de rede. Nessa dissertação, foi desenvolvido um método de controle usando um mecanismo de previsão baseado na análise do tráfego que chega aos servidores. Os algoritmos de aprendizado de máquina baseados em Redes Neurais e em Máquinas de Vetores de Suporte foram utilizados, e foi verificado que é possível reduzir o consumo de energia em até 12% em servidores com processador Intel Sandy Bridge e em até 21% em servidores com processador Intel Haswell quando comparado com a frequência máxima, que é atualmente a solução mais utilizada na indústria.
|
33 |
Ordonnancement de tâches efficace et à complexité maîtrisée pour des systèmes temps-réelMuhammad, F. 09 April 2009 (has links) (PDF)
Les performances des algorithmes d'ordonnancement ont un impact direct sur les performances du système complet. Les algorithmes d'ordonnancement temps réel possèdent des bornes théoriques d'ordonnançabilité optimales mais cette optimalité est souvent atteinte au prix d'un nombre élevé d'événements d'ordonnancement à considérer (préemptions et migrations de tâches) et d'une complexité algorithmique importante. Notre opinion est qu'en exploitant plus efficacement les paramètres des tâches il est possible de rendre ces algorithmes plus efficaces et à coût maitrisé, et ce dans le but d'améliorer la Qualité de Service (QoS) des applications. Nous proposons dans un premier temps des algorithmes d'ordonnancement monoprocesseur qui augmentent la qualité de service d'applications hybrides c'est-à-dire qu'en situation de surcharge, les tâches à contraintes souples ont leur exécution maximisée et les échéances des tâches à contraintes strictes sont garanties. Le coût d'ordonnancement de ces algorithmes est aussi réduit (nombre de préemptions) par une meilleure exploitation des paramètres implicites et explicites des tâches. Cette réduction est bénéfique non seulement pour les performances du système mais elle agit aussi positivement sur la consommation d'énergie. Aussi nous proposons une technique associée à celle de DVFS (dynamic voltage and frequency scaling) afin de minimiser le nombre de changements de points de fonctionnement du fait qu'un changement de fréquence implique un temps d'inactivité du processeur et une consommation d'énergie. Les algorithmes d'ordonnancement multiprocesseur basés sur le modèle d'ordonnancement fluide (notion d'équité) atteignent des bornes d'ordonnançabilité optimales. Cependant cette équité n'est garantie qu'au prix d'hypothèses irréalistes en pratique du fait des nombres très élevés de préemptions et de migrations de tâches qu'ils induisent. Dans cette thèse un algorithme est proposé (ASEDZL) qui n'est pas basé sur le modèle d'ordonnancement fluide. Il permet non seulement de réduire les préemptions et les migrations de tâches mais aussi de relâcher les hypothèses imposées par ce modèle d'ordonnancement. Enfin, nous proposons d'utiliser ASEDZL dans une approche d'ordonnancement hiérarchique ce qui permet d'obtenir de meilleurs résultats que les techniques classiques.
|
34 |
DVFS power management in HPC systemsEtinski, Maja 01 June 2012 (has links)
Recent increase in performance of High Performance Computing (HPC) systems has been followed by
even higher increase in power consumption. Power draw of modern supercomputers leads to very high
operating costs and reliability concerns. Furthermore, it has negative consequences on the environment.
Accordingly, over the last decade there have been many works dealing with power/energy management
in HPC systems.
Since CPUs accounts for a high portion of the total system power consumption, our work aims at CPU
power reduction. Dynamic Voltage Frequency Scaling (DVFS) is a widely used technique for CPU
power management. Running an application at lower frequency/voltage reduces its power
consumption. However, frequency scaling should be used carefully since it has negative effects on the
application performance.
We argue that the job scheduler level presents a good place for power management in an HPC center
having in mind that a parallel job scheduler has a global overview of the entire system. In this thesis we
propose power-aware parallel job scheduling policies where the scheduler determines the job CPU
frequency, besides the job execution order. Based on the goal, the proposed policies can be classified
into two groups: energy saving and power budgeting policies. The energy saving policies aim to reduce
CPU energy consumption with a minimal job performance penalty. The first of the energy saving
policies assigns the job frequency based on system utilization while the other makes job performance
predictions. While for less loaded workloads these policies achieve energy savings, highly loaded
workloads suffer from a substantial performance degradation because of higher job wait times due to
an increase in load caused by longer job run times. Our results show higher potential of the DVFS
technique when applied for power budgeting.
The second group of policies are policies for power constrained systems. In contrast to the systems
without a power limitation, in the case of a given power budget the DVFS technique even improves
overall job performance reducing the average job wait time. This comes from a lower job power
consumption that allows more jobs to run simultaneously. The first proposed policy from this group
assigns CPU frequency using the job predicted performance and current power draw of already running
jobs. The other power budgeting policy is based on an optimization problem which solution determines
the job execution order, as well as power distribution among jobs selected for execution. This policy
fully exploits available power and leads to further performance improvements.
The last contribution of the thesis is an analysis of the DVFS technique potential for energyperformance
trade-off in current and future HPC systems. Ongoing changes in technology decrease the
DVFS applicability for energy savings but the technique still reduces power consumption making it
useful for power constrained systems. In order to analyze DVFS potential, a model of frequency
scaling impact on MPI application execution time has been proposed and validated against
measurements on a large-scale system. This parametric analysis showed for which
application/platform characteristic, frequency scaling leads to energy savings. / El aumento de rendimiento que han experimentado los sistemas de altas prestaciones ha venido acompañado de un aumento aún mayor en el consumo de energía. El consumo de los supercomputadores actuales implica unos costes muy altos de funcionamiento. Estos costes no tienen simplemente implicaciones a nivel económico sino también implicaciones en el medio ambiente. Dado la importancia del problema, en los últimos tiempos se han realizado importantes esfuerzos de investigación para atacar el problema de la gestión eficiente de la energía que consumen los sistemas de supercomputación.
Dado que la CPU supone un alto porcentaje del consumo total de un sistema, nuestro trabajo se centra en la reducción y gestión eficiente de la energía consumida por la CPU. En concreto, esta tesis se centra en la viabilidad de realizar esta gestión mediante la técnica de Dynamic Voltage Frequency Scalingi (DVFS), una técnica ampliamente utilizada con el objetivo de reducir el consumo energético de la CPU. Sin embargo, esta técnica puede implicar una reducción en el rendimiento de las aplicaciones que se ejecutan, ya que implica una reducción de la frecuencia. Si tenemos en cuenta que el contexto de esta tesis son sistemas de alta prestaciones, minimizar el impacto en la pérdida de rendimiento será uno de nuestros objetivos. Sin embargo, en nuestro contexto, el rendimiento de un trabajo viene determinado por dos factores, tiempo de ejecución y tiempo de espera, por lo que habrá que considerar los dos componentes.
Los sistemas de supercomputación suelen estar gestionados por sistemas de colas. Los trabajos, dependiendo de la política que se aplique y el estado del sistema, deberán esperar más o menos tiempo antes de ser ejecutado. Dado las características del sistema objetivo de esta tesis, nosotros consideramos que el Planificador de trabajo (o Job Scheduler), es el mejor componente del sistema para incluir la gestión de la energía ya que es el único punto donde se tiene una visión global de todo el sistema.
En este trabajo de tesis proponemos un conjunto de políticas de planificación que considerarán el consumo energético como un recurso más. Estas políticas decidirán que trabajo ejecutar, el número de cpus asignadas y la lista de cpus (y nodos) sino también la frecuencia a la que estas cpus se ejecutarán. Estas políticas estarán orientadas a dos objetivos: reducir la energía total consumida por un conjunto de trabajos y controlar en consumo puntual de un conjunto puntual para evitar saturaciones del sistema en aquellos centros que puedan tener una capacidad limitada (permanente o puntual).
El primer grupo de políticas intentará reducir el consumo total minimizando el impacto en el rendimiento. En este grupo encontramos una primera política que asigna la frecuencia de las cpus en función de la utilización del sistema y una segunda que calcula una estimación de la penalización que sufrirá el trabajo que va a empezar para decidir si reducir o no la frecuencia. Estas políticas han mostrado unos resultados aceptables con sistemas poco cargados, pero han mostrado unas pérdidas de rendimiento significativas cuando el sistema está muy cargado. Estas pérdidas de rendimiento no han sido a nivel de incremento significativo del tiempo de ejecución de los trabajos, pero sí de las métricas de rendimiento que incluyen el tiempo de espera de los trabajos (habituales en este contexto).
El segundo grupo de políticas, orientadas a sistemas con limitaciones en cuanto a la potencia que pueden consumir, han mostrado un gran potencial utilizando DVFS como mecanismo de
gestión. En este caso, comparado con un sistema que no incluya esta gestión, han demostrado mejoras en el rendimiento ya que permiten ejecutar más trabajos de forma simultánea, reduciendo significativamente el tiempo de espera de los trabajos. En este segundo grupo proponemos una política basada en el rendimiento del trabajo que se va a ejecutar y una segunda que considera la asignación de todos los recursos como un problema de optimización lineal. Esta última política es la contribución más importante de la tesis ya que demuestra un buen comportamiento en todos los casos evaluados.
La última contribución de la tesis es un estudio del potencial de DVFS como técnica de gestión de la energía en un futuro próximo, en función de un estudio de las características de las aplicaciones, de la reducción de DVFS en el consumo de la CPU y del peso de la CPU dentro de todo el sistema. Este estudio indica que la capacidad de DVFS de ahorrar energía será limitado pero sigue mostrando un gran potencial de cara al control del consumo energético.
|
35 |
An Adaptive Fuzzy Proportional-Integral Predictor for Power Management of 3D Graphics System-On-ChipYeh, Jia-huei 02 August 2010 (has links)
As time goes by rapid development of 3D graphics technique and 3C portable product output, 3D graphics have been widely applied to handheld devices, such as notebooks, PDAs, and smart cellular phones. Generally, to process 3D graphics applications in mobile devices, processor needs strong capability of handling large computational-intensive workloads. Complex computation consumes a great quantity of electric power. But the lifetime of handheld device battery is limited. Therefore, the cost, to satisfy this demand, will be shortening the supply time of device battery. Moreover, Moore¡¦ law said that the number of transistors in a chip is double in every eighteen months. But these days the advance in manufacturing batteries still cannot get up with the advance in developing processors. In addition, the improvement of chip size has led to more small, supply voltage of kernel processor in portable device. Considering system efficiency and battery lifetime simultaneously increase the difficulty of designing power management scheme. So, how to manage power effectively has become one of the important key for designing handheld products.
For 3D graphics system, dynamic voltage and frequency scaling (DVFS) is one of good solutions to implement power management policy. DVFS needs an efficient online prediction method to predict the workload of frames and then appropriately adjust voltage and frequency for saving energy consumption. Consequently, a lot of related papers have proposed different prediction policy to predict the executing workload of 3D graphics system. For instance, the existing prediction policies include signature-based[1], history-based[3] and proportion-integral-derivative (PID)[14] methods, but most of designers put power management in software, i.e. processors. This solution not only slows power management to get the information about executing time of graphic processing unit (GPU), but also increases the operating overhead of CPU in handheld system.
In this paper, we propose a power management workload prediction scheme with a framework of using proportion-integral (PI) controller to be a master controller and fuzzy controller to be a slave controller, and then implement it into hardware circuit. Taking advantage of fuzzy conception in fuzzy controller is to adjust the proportional parameter in PI controller, the shortage of traditional PI controller that demands on complicated try-and-error method to look for a good proportional and integral parameters can be avoided so that the adaption and forecasting accuracy can be improved. Besides, Uniform Window-size Predictor 1 (UW1) is also implemented as an assistant manner. Using UW1 predictor appropriately can improve the prediction trend to catch up with the trend of real workload. Experimental results show that our predictor improves prediction accuracy about 3.8% on average and saves about 0.02% more energy compared with PI predictor[18]. Circuit area and power consumption only increases 6.8% percent and 1.4% compared with PI predictor. Besides, we also apply our predictor to the 3D first person game, Quake II, in the market. The result shows that our predictor is indeed an effective prediction policy. The adaption can put up with the intense workload variation of real game and adjust voltage and frequency precisely to decrease power consumption and meet the purpose of energy saving.
|
36 |
Hybrid Fuzzy Kalman Filter for Workload Prediction of 3D Graphic SystemKe, Bao-chen 28 July 2011 (has links)
In modern life, 3D graphics system is widely applied to portable product like Notebook, PDA and smart phone. Unlike desktop system, the capacity of batteries of these embedded systems is finite. Furthermore, rapid improvement of IC process leads to quick growth in the transistor count of a chip. According to above-mentioned reason and the complex computation of 3D graphics system, the power consumption will be very large. To efficiently lengthen the lifetime of battery, power management is an indispensable technique.
Dynamic voltage and frequency scaling (DVFS) is one of the popular power management policy. In the scheme of DVFS, an accurate workload predictor is needed to predict the workload of every frame. According to these predictions a specific voltage and frequency level is applied to each frame of the 3D graphics system. The number of the voltage/frequency levels and the voltage/frequency of each level are fixed, the voltage/frequency table is decided according to the application of power management. Whenever the workload predictor completes the workload prediction of next frame, the voltage/frequency level of next frame will be found by looking up the voltage/frequency table.
In this thesis, we propose a power management scheme with a framework composed of mainly Kalman filter and an auxiliary fuzzy controller to predict the workload of next frame. This scheme amends the shortcomings of traditional Kalman filter that needs to know the system features beforehand. And we propose a brand new concept named ¡¨delayed display¡¨ to massively reduce the miss rate of prediction without changing the framework of predictor.
|
37 |
Bottleneck identification and acceleration in multithreaded applicationsJoao, José Alberto 09 February 2015 (has links)
When parallel applications do not fully utilize the cores that are available to them they are missing the opportunity to have better performance. Sometimes threads have to wait for other threads. I call the code segments that make other threads wait bottlenecks. Examples of these bottlenecks include contended critical sections, threads arriving late to barriers and the slowest stage of a pipelined program. Other times all threads are running but some of them, which I call lagging threads, are making less progress, setting the stage to become bottlenecks. My thesis proposes identifying the code segments that are more critical for performance and efficiently accelerating them using faster cores, by either migrating execution to large cores of an Asymmetric Chip Multi-Processor (ACMP) or executing locally on DVFS-accelerated cores. The key contribution of this dissertation is a Utility of Acceleration metric that combines a measure of the acceleration for each code segment with a measure of its criticality. This metric enables meaningful comparisons to decide which bottlenecks or lagging threads to accelerate with each of the available acceleration mechanisms. My evaluation shows significant performance improvement for single multithreaded applications and sets of multiple single- and multi-threaded applications, and also reduction in energy-delay product due to the efficient utilization of the available acceleration mechanisms. / text
|
38 |
Predictive power management for multi-core processorsBircher, William Lloyd 07 February 2011 (has links)
Energy consumption by computing systems is rapidly increasing due to the growth of data centers and pervasive computing. In 2006 data center energy usage in the United States reached 61 billion kilowatt-hours (KWh) at an annual cost of 4.5 billion USD [Pl08]. It is projected to reach 100 billion KWh by 2011 at a cost of 7.4 billion USD. The nature of energy usage in these systems provides an opportunity to reduce consumption.
Specifically, the power and performance demand of computing systems vary widely in time and across workloads. This has led to the design of dynamically adaptive or power managed systems. At runtime, these systems can be reconfigured to provide optimal performance and power capacity to match workload demand. This causes the system to frequently be over or under provisioned. Similarly, the power demand of the system is difficult to account for. The aggregate power consumption of a system is composed of many heterogeneous systems, each with a unique power consumption characteristic.
This research addresses the problem of when to apply dynamic power management in multi-core processors by accounting for and predicting power and performance demand at the core-level. By tracking performance events at the processor core or thread-level, power consumption can be accounted for at each of the major components of the computing system through empirical, power models. This also provides accounting for individual components within a shared resource such as a power plane or top-level cache. This view of the system exposes the fundamental performance and power phase behavior, thus making prediction possible.
This dissertation also presents an extensive analysis of complete system power accounting for systems and workloads ranging from servers to desktops and laptops. The analysis leads to the development of a simple, effective prediction scheme for controlling power adaptations. The proposed Periodic Power Phase Predictor (PPPP) identifies patterns of activity in multi-core systems and predicts transitions between activity levels. This predictor is shown to increase performance and reduce power consumption compared to reactive, commercial power management schemes by achieving higher average frequency in active phases and lower average frequency in idle phases. / text
|
39 |
Evaluation of Energy-Optimizing Scheduling Algorithms for Streaming Computations on Massively Parallel Multicore Architectures / Evaluering av energioptimerande schemaläggningsalgoritmer för strömmande beräkningar på massivt parallella flerkärniga arkitekturerJanzén, Johan January 2014 (has links)
This thesis describes an environment to evaluate and compare static schedulers for real pipelined streaming applications on massively parallel architectures, such as Intel Single chip Cloud Computer (SCC), Adapteva Epiphany, and Tilera TILE-Gx series. The framework allows performance comparison of schedulers in their execution time, or the energy usage of static schedules with energy models and measurements on real platform. This thesis focuses on the implementation of a framework evaluating the energy consumption of such streaming applications on the SCC. The framework can run streaming applications, built as task collections, with static schedules including dynamic frequency scaling. Streams are handled by the framework with FIFO buffers, connected between tasks. We evaluate the framework by considering a pipelined mergesort implementation with different static schedules. The runtime is compared with the runtime of a previously published task based optimized mergesort implementation. The results show how much overhead the framework adds on to the streaming application. As a demonstration of the energy measuring capabilities, we schedule and analyze a Fast Fourier Transform application, and discuss the results. Future work may include quantitative comparative studies of a range of different static schedulers. This has, to our knowledge, not been done previously.
|
40 |
Neuromorphic Controller for Low Power Systems From Devices to CircuitsJanuary 2011 (has links)
abstract: A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore potential applications such as resonant clocking and on-chip voltage regulation. A system level study is conducted to evaluate the effect of on-chip voltage regulator employing magnetic inductors as the output filter. It is concluded that neuromorphic power controller is beneficial for fine-grained per-core power management in conjunction with on-chip voltage regulators utilizing scaled magnetic inductors. / Dissertation/Thesis / Ph.D. Electrical Engineering 2011
|
Page generated in 0.0833 seconds