• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 247
  • 106
  • 32
  • 18
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 828
  • 251
  • 204
  • 127
  • 104
  • 86
  • 67
  • 64
  • 55
  • 54
  • 42
  • 42
  • 40
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

An analysis system for dye delivery on continuous dyeing ranges

Boonroeng, Supannee 08 1900 (has links)
No description available.
102

Chlorination of synthetic dyes and synthetic brighteners

Gilmore, Laurie Ann 08 1900 (has links)
No description available.
103

Removal of cationic and anionic dyes from aqueous solution using a clay-based nanocomposite.

Ngulube, Tholiso 20 September 2019 (has links)
PhDENV / Department of Ecology and Resource Management / Some industries such as textiles, ceramics, paper and printing are known to use significant amounts of dye to colour their products and during the colouring process, certain quantities of dyes are absorbed by the products, and some of them end up in wastewater. Depending on their application, some synthetic dyes are designed to be chemically or biologically resistant and their presence in the environment can cause severe environmental problems because of their colour impartation to water bodies. Therefore, proper treatment is required to remove these pollutants from wastewater before discharge into the environment. In this thesis, the potential of dye removal from wastewater by calcined magnesite, halloysite nanoclay and calcined magnesite - halloysite nanoclay composite was evaluated. To this end, the study was subdivided to four segments. The first segment of the study focused on evaluating the efficiency of using calcined magnesite to remove Methylene Blue (MB), Direct Red 81 (DR81), Methyl Orange (MO) and Crystal Violet (CV) dyes from aqueous systems using a batch study. To achieve that, several operational factors like residence time, adsorbent dosage, dye concentration and temperature were appraised. The adsorbent was subjected to different kinds of physicochemical characterization to determine the various characteristics that would assist in the dye uptake process. Characterization results showed that the adsorbent material was highly crystalline with magnesite, periclase, dolomite, and quartz as some of the crystalline phases. The batch study proved that calcined magnesite is effective in the treatment of dye contaminated water and moreover it performed well in terms of colour removal, though exceptional results were recorded for CV removal with complete decolourisation occurring in first few minutes of contact. In terms of experimental adsorption capacity, the performance of calcined magnesite was in the order CV (14.99 mg/g) > DR81 (12.56 mg/g) > MO (0.64 mg/g) > MB (0.39 mg/g). Mechanisms of adsorption where explained by fitting the experimental data into adsorption isotherms, kinetics, and thermodynamic parameters. Neither, the Langmuir, nor the Freundlich nor the Dubinin Radushkevich, nor the Temkin model could perfectly describe the adsorption of the four dyes onto calcined magnesite, however adsorption kinetics obeyed the pseudo second order model, implying that, the dye removal process was primarily a chemical process. In accordance with the results of this study, it can be concluded that calcined magnesite can be used effectively for the removal of dyes in aqueous solution and thus can be applied to treat wastewater containing dyes. The second segment of the study focused on the removal of MB, DR81, MO and CV dyes by halloysite nanoclay. Physicochemical characterisation revealed that the nanoclay has a surface area of 42 m²/g and its ABSTRACT iv morphology is predominated by tubular structures, which exhibit some hollow rod like structures. Various important parameters namely contact time, initial concentration of dyes, dosage, solution temperature and solution pH were optimized to achieve maximum adsorption capacity and it was observed that the effect of initial pH and temperature of the aqueous solution was neglibible on removal of the four dyes. The experimental adsorption capacities towards 40 mg/L of MB, DR81, MO and CV dyes were 17.51, 14.11, 0.38, and 4.75 mg/g respectively. The results indicate that natural halloysite nanoclay is an efficient material for the removal of the selected dyes. Due to its low cost and non-toxicity, halloysite nanoclay can be considered a good replacement option of other high cost materials used to treat coloured wastewater especially in developing countries like South Africa. Having observed the performance of calcined magnesite and halloysite nanoclay individually in the removal of selected dyes, a third study was designed with the aim of preparing a nanocomposite adsorbent from the aforementioned adsorbent materials and then evaluating the synergistic influence of the mechanochemical modification by a ball miller on the removal of MB, DR81, MO and CV dyes. Physicochemical characterization was carried out to get an insight of pre- and -post adsorption characteristics of the nanocomposite material and results showed major changes which could be an indication of dye uptake by the nanocomposite material. According to the results, the nanocomposite material outcompeted its component individual constituent materials i.e (calcined magnesite and halloysite nanoclay material) in the removal of DR81, which in turn was the highest removal efficiency observed for the whole batch adsorption study recording a maximum adsorption capacity and percentage removal of 19.89 mg/g and 99.40% respectively. Experimental results fitted the Langmuir and pseudo-second order models perfectly hence demonstrating that adsorption took place on a homogenous adsorbent layer via chemisorption. In overall, the results suggested that the nanocomposite is a suitable adsorbent for decolourising industrial wastewater. Based on the overall performance of the adsorbents in removing the four dyes, it was observed that the nanocomposite material had a high affinity for DR81 dye hence it was chosen as the model dye for further application in column studies. The effect of flow rate, bed height and initial dye concentration on the removal of DR81 was investigated. Maximum bed capacity and equilibrium dye uptake were determined and break through curves were plotted. Percentage dye removal increased with decrease in flow rate and increase in bed height. The maximum capacity of column was found to be about 51.73 mg DR81 per gram of the nanocomposite adsorbent for a flow rate of 3 mL/min, initial concentration of 10 mg/L and 4 cm bed height. Data from column studies was fitted to the Thomas model and Adams-Bohart models. The comparison of the R2 values obtained from both models showed a better fit for the nanocomposite material than the individual halloysite nanoclay and calcined magnesite materials. The study revealed the applicability of calcined magnesite- halloysite nanoclay composite in fixed bed column for the removal of DR81 dye from aqueous solution. v The reuse of an adsorbent is essential in order to make the adsorption process economic and environmentally friendly. To recover the adsorbate and renew the adsorbent for further use, a chemical method of regeneration was applied by using 0.1 M NaOH as the desorbent. Regeneration with 0.1 M NaOH proved very efficient for some dyes and less efficient for others depending on the adsorbent material used at the time. The general observation was that the adsorption capacity of the adsorbent materials decreased with successive adsorption – desorption cycles. Furthermore, regeneration with NaOH, favoured the acidic dyes (DR81 and MO) more than the basic dyes (MB and CV) possibly due to electrostatic interactions between oppositely charged molecules allowing for reversible reactions to take place. The three tested adsorbents namely calcined magnesite, halloysite nanoclay and their nanocomposite thereof were applied for the treatment of real wastewater effluent from a printing and ink industry. The adsorbents performed very well in terms of colour removal as recommended by the South African standards of wastewater discharge, However, in terms of pH, calcined magnesite and the nanocomposite produced a highly alkaline solution hence wastewater neutralisation by an acid is recommended before discharge. These findings show that the two natural clay-based materials (calcined magnesite and halloysite nanoclay) and their nanocomposite thereof have a great potential for application in dye wastewater remediation since the materials used in the process are inexpensive, abundant and require minimal modifications. / NRF
104

Towards bis-benzimidazole near-infrared absorbing and emitting dyes

Wang, Tianyi 16 March 2021 (has links)
A conjugated bis-benzimidazole chromophore is predicted to show absorptions in the near-infrared (NIR) region of the electromagnetic spectrum. However, there are no reports to-date of any NIR absorbing and emitting dyes that are based on a bis-benzimidazole structural backbone. This thesis reports recent advancements in the discovery and study of this new class of dyes. Following literature procedures, the syntheses of bis(benzimidazolyl)methane compounds are successful. An unexpected product isolated during the attempted oxidation of a bis(benzimidazolyl)methane compound using p-chloranil showed intense absorption in the NIR (λmax = 712 nm, ε = 14600 L·mol-1·cm-1), solubilities in polar solvents like methanol and water, and electrochemical activities. X-ray crystallography, mass spectrometry, and NMR spectroscopy confirmed the connectivity and structure of the product to contain a combination of quinone and benzimidazole moieties, which later revealed to be the core chromophore by computational studies. This unprecedented combination of moieties gave a chromophore that is predicted to absorb in the far-red even without substitution. Attempts to synthesize boron-based bis-imidazole dyes with N-methylation shed light on the feasibility of the design of such moiety. Considering the additional functionality that could be accessed through the methylation of the labile benzimidazole nitrogen atoms, N-methylated bis(benzimidazolyl)methane precursors were successfully synthesized and fully characterized. Attempts of the boron coordination showed promising signs, as the 1H, 11B, and 19F NMR spectra showed solid evidence of the successful isolation of the boron chelate. Computational studies of methyl, phenyl, and triazole-substituted boron chelate derivatives projected absorptions in the NIR region. Intense transitions are found to be based on frontier molecular orbitals and differ significantly among the derivatives, predicting substantial tunability of this type of dyes. / Graduate / 2022-02-18
105

Preparation and ultra-violet absorption studies of leucocyanides of the triarylmethane dyes

Katzakian, Arthur, Jr. 01 January 1960 (has links)
No description available.
106

Design and synthesis of donor-acceptor-donor xanthene-based near infrared I and shortwave infrared (SWIR) dyes for biological imaging

Rathnamalala, Chathuranga 12 May 2023 (has links) (PDF)
Small molecule organic dyes with absorption and emission in the near infrared region (NIR) attracted much attention for various applications such as dye sensitized solar cells, fluorescent guided surgery, stimuli responsive bioimaging and photodynamic therapy. Dyes with high absorption and emission in the NIR region are beneficial for stimuli responsive bioimaging due to the deeper penetration of NIR light, less cell damage, high resolution, and low background autofluorescence from biomolecules. Of the many small molecule dyes, xanthene-based dyes exhibit outstanding photophysical properties and good stimuli response for use in bioimaging applications. However, absorption and emission of the xanthene dyes lie in the visible region, which limit their applications in cellular imaging. Many of the NIR dyes have very poor fluorescence; consequently, an alternative approach to fluorescent imaging is photoacoustic imaging that uses sound waves to generate pictures of deep tissues. In this dissertation, we discuss the utility of xanthene based NIR dyes as photoacoustic imaging contrast agents for multiplex imaging and deep tissue nitric oxide sensing in the drug-induced liver injury. Chapter I discuss the fundamentals of fluorescence and photoacoustic imaging, background of the xanthene dyes and other fluorescent dyes, and the design strategies to develop NIR xanthene-based dyes. Chapter II is based on our approach to the design and synthesis of NIR xanthene-based dyes by C-H bond functionalization, with the first example being Rhodindolizine, which absorb and emits in NIR II or short-wave infrared (SWIR) region. In chapter III, we describe the design and synthesis of thienylpiperidine xanthene-based NIR and shortwave-infrared (SWIR) dyes for the photoacoustic imaging. One dye in particular (XanthCR-880) boasts a strong PA signal at 880 nm with good biological compatibility and photostability, yields multiplexed imaging with an aza-BODIPY reference dye, and is detected at a depth of 4 cm. In chapter IV, we report a series of SWIR dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1, SCR-4), thienothiophene (SCR-2, SCR-5), and bithiophene (SCR-3, SCR-6). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated to develop a ratiometric nanoparticle for nitric oxide (NO) (rNP-NO). rNP-NO was used to successfully perform in vivo studies to visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Chapter V describes another series of xanthene-based dyes with a thiophene ᴫ spacer and several different donors. UV-Vis absorption studies were performed after converting the dyes to the opened form with trifluoracetic acid. These novel XanthCR-TD dyes exhibit absorption maxima in NIR I region from 700 - 900 nm.
107

The synthesis and biological properties of 3-(4'-dimethylaminophenylazo)phenyl methyl sulfide

Klaassen, Dwight Homer. January 1961 (has links)
Call number: LD2668 .T4 1961 K59
108

DYE ASSISTED HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC).

GNANASAMBANDAN, THIRUPPUVANAM. January 1983 (has links)
During the course of study of reversed phase ion partition chromatography, it was observed that non-ionic substances such as alcohols, ester, and ketones undergo chromatographic separation in some as yet undefined association with cationic dyes (methylene blue chloride or brilliant green). Detection of non-chromophore trace level compounds has been a major problem in liquid chromatography due to the lack of a universal detector. Refractive index detector, although a universal detector lacks sensitivity. The U.V. absorbance detector is the work horse of liquid chromatography. Its major drawback is its lack of universality. It is often desirable to extend the utility of this detector to compounds toward which they are normally insensitive. This research was directed to developing the U.V.-Visible absorbance detector into a 'universal detector'. Using a mixture of methanol/water or dioxane/water solvent containing 1 x 10⁻⁴ M cationic dye such as the mobile phase it was shown to separate on Partisil ODS or on Zorbax ODS a series of C₂-C₅ alcohols and other neutrals at submicrogram levels with good base line separation. The alcohols carry with them some dye which must come from the presaturated dye ODS column. The dye peaks are detected spectrophotometrically at λ maximum of dye and becomes a measure of the eluting alcohol concentration. Normally, these aliphatic alcohols have a poor sensitivity either with refractive index or U.V. absorbance detector. This novel mode of detection and separation of trace quantities of alcohols and other neutral species represents a significant increase in sensitivity and should be widely applicable. The experimental data on which these separations are based, poses very interesting questions. For example, is there a specific kind of interaction between the alcohol and the dye or do the alcohols distribute between the Partisil ODS and mobile phase in their customary fashion and dissolve some of the immobilized dye because of their local excess concentration? Furthermore why do the slopes of the linear calibration curves obtained for each of the alcohols vary with the particular alcohol? Retention model based on dye alcohol complex formation and equilibrium partitioning of these species is advanced.
109

The detection and determination of selected organic pollutants by modern instrumental techniques of analysis

Oxspring, Darren A. January 1996 (has links)
No description available.
110

Phase conjugation in amplifying media

Routledge, P. A. January 1987 (has links)
No description available.

Page generated in 0.0287 seconds