• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 10
  • 9
  • 5
  • 2
  • 1
  • Tagged with
  • 57
  • 57
  • 18
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Programming Model and Protocols for Reconfigurable Distributed Systems

Arad, Cosmin January 2013 (has links)
Distributed systems are everywhere. From large datacenters to mobile devices, an ever richer assortment of applications and services relies on distributed systems, infrastructure, and protocols. Despite their ubiquity, testing and debugging distributed systems remains notoriously hard. Moreover, aside from inherent design challenges posed by partial failure, concurrency, or asynchrony, there remain significant challenges in the implementation of distributed systems. These programming challenges stem from the increasing complexity of the concurrent activities and reactive behaviors in a distributed system on the one hand, and the need to effectively leverage the parallelism offered by modern multi-core hardware, on the other hand. This thesis contributes Kompics, a programming model designed to alleviate some of these challenges. Kompics is a component model and programming framework for building distributed systems by composing message-passing concurrent components. Systems built with Kompics leverage multi-core machines out of the box, and they can be dynamically reconfigured to support hot software upgrades. A simulation framework enables deterministic execution replay for debugging, testing, and reproducible behavior evaluation for large-scale Kompics distributed systems. The same system code is used for both simulation and production deployment, greatly simplifying the system development, testing, and debugging cycle. We highlight the architectural patterns and abstractions facilitated by Kompics through a case study of a non-trivial distributed key-value storage system. CATS is a scalable, fault-tolerant, elastic, and self-managing key-value store which trades off service availability for guarantees of atomic data consistency and tolerance to network partitions. We present the composition architecture for the numerous protocols employed by the CATS system, as well as our methodology for testing the correctness of key CATS algorithms using the Kompics simulation framework. Results from a comprehensive performance evaluation attest that CATS achieves its claimed properties and delivers a level of performance competitive with similar systems which provide only weaker consistency guarantees. More importantly, this testifies that Kompics admits efficient system implementations. Its use as a teaching framework as well as its use for rapid prototyping, development, and evaluation of a myriad of scalable distributed systems, both within and outside our research group, confirm the practicality of Kompics. / Kompics / CATS / REST
52

Metodologie pro návrh číslicových obvodů se zvýšenou spolehlivostí / Methodology of highly reliable systems design

Straka, Martin Unknown Date (has links)
In the thesis, a methodology alternative to existing methods of digital systems design with increased dependability implemented into FPGA is presented, new features which can be used in the implementation and testing of these systems are demonstrated. The research is based on the use of FPGA partial dynamic reconfiguration for the design of fault tolerant systems. In these applications, the partial dynamic reconfiguration can be used as a mechanism to correct the fault and recover the system after the fault occurrence. First, the general principles of diagnostics, testing and digital systems dependability are presented including a brief description of FPGA components and their architectures. Next, a survey of currently used methods and techniques used for the design and implementation of fault tolerant systems into FPGA is described, especially the methods used for fault detection and localization, their correction, together with the principles of evaluating fault tolerant systems design quality.  The most important part of the thesis is seen in the description of the design methodology, implementation and testing of fault tolerant systems implemented into FPGAs which uses SRAMs as the configuration memory. First, the methodology of developing and automated checker components design for digital systems and communication protocols is presented. Then, a reference architecture of a dependable system implemented into FPGA is demonstrated including several fault tolerant architectures based on the use of partial dynamic reconfiguration as the mechanism of fault correction and the recovery from it. The principles of controlling the reconfiguration process are described together with the description of the test platform which allows to test and verify the design of fault tolerant systems based on the methodology presented in the thesis. The experimental results and the contribution of the thesis are discussed in the conclusions.
53

Programming Model and Protocols for Reconfigurable Distributed Systems

Arad, Cosmin Ionel January 2013 (has links)
Distributed systems are everywhere. From large datacenters to mobile devices, an ever richer assortment of applications and services relies on distributed systems, infrastructure, and protocols. Despite their ubiquity, testing and debugging distributed systems remains notoriously hard. Moreover, aside from inherent design challenges posed by partial failure, concurrency, or asynchrony, there remain significant challenges in the implementation of distributed systems. These programming challenges stem from the increasing complexity of the concurrent activities and reactive behaviors in a distributed system on the one hand, and the need to effectively leverage the parallelism offered by modern multi-core hardware, on the other hand. This thesis contributes Kompics, a programming model designed to alleviate some of these challenges. Kompics is a component model and programming framework for building distributed systems by composing message-passing concurrent components. Systems built with Kompics leverage multi-core machines out of the box, and they can be dynamically reconfigured to support hot software upgrades. A simulation framework enables deterministic execution replay for debugging, testing, and reproducible behavior evaluation for largescale Kompics distributed systems. The same system code is used for both simulation and production deployment, greatly simplifying the system development, testing, and debugging cycle. We highlight the architectural patterns and abstractions facilitated by Kompics through a case study of a non-trivial distributed key-value storage system. CATS is a scalable, fault-tolerant, elastic, and self-managing key-value store which trades off service availability for guarantees of atomic data consistency and tolerance to network partitions. We present the composition architecture for the numerous protocols employed by the CATS system, as well as our methodology for testing the correctness of key CATS algorithms using the Kompics simulation framework. Results from a comprehensive performance evaluation attest that CATS achieves its claimed properties and delivers a level of performance competitive with similar systems which provide only weaker consistency guarantees. More importantly, this testifies that Kompics admits efficient system implementations. Its use as a teaching framework as well as its use for rapid prototyping, development, and evaluation of a myriad of scalable distributed systems, both within and outside our research group, confirm the practicality of Kompics. / <p>QC 20130520</p>
54

Models, Design Methods and Tools for Improved Partial Dynamic Reconfiguration / Modelle, Entwurfsmethoden und -Werkzeuge für die partielle dynamische Rekonfiguration

Rullmann, Markus 14 October 2010 (has links) (PDF)
Partial dynamic reconfiguration of FPGAs has attracted high attention from both academia and industry in recent years. With this technique, the functionality of the programmable devices can be adapted at runtime to changing requirements. The approach allows designers to use FPGAs more efficiently: E. g. FPGA resources can be time-shared between different functions and the functions itself can be adapted to changing workloads at runtime. Thus partial dynamic reconfiguration enables a unique combination of software-like flexibility and hardware-like performance. Still there exists no common understanding on how to assess the overhead introduced by partial dynamic reconfiguration. This dissertation presents a new cost model for both the runtime and the memory overhead that results from partial dynamic reconfiguration. It is shown how the model can be incorporated into all stages of the design optimization for reconfigurable hardware. In particular digital circuits can be mapped onto FPGAs such that only small fractions of the hardware must be reconfigured at runtime, which saves time, memory, and energy. The design optimization is most efficient if it is applied during high level synthesis. This book describes how the cost model has been integrated into a new high level synthesis tool. The tool allows the designer to trade-off FPGA resource use versus reconfiguration overhead. It is shown that partial reconfiguration causes only small overhead if the design is optimized with regard to reconfiguration cost. A wide range of experimental results is provided that demonstrates the benefits of the applied method. / Partielle dynamische Rekonfiguration von FPGAs hat in den letzten Jahren große Aufmerksamkeit von Wissenschaft und Industrie auf sich gezogen. Die Technik erlaubt es, die Funktionalität von progammierbaren Bausteinen zur Laufzeit an veränderte Anforderungen anzupassen. Dynamische Rekonfiguration erlaubt es Entwicklern, FPGAs effizienter einzusetzen: z.B. können Ressourcen für verschiedene Funktionen wiederverwendet werden und die Funktionen selbst können zur Laufzeit an veränderte Verarbeitungsschritte angepasst werden. Insgesamt erlaubt partielle dynamische Rekonfiguration eine einzigartige Kombination von software-artiger Flexibilität und hardware-artiger Leistungsfähigkeit. Bis heute gibt es keine Übereinkunft darüber, wie der zusätzliche Aufwand, der durch partielle dynamische Rekonfiguration verursacht wird, zu bewerten ist. Diese Dissertation führt ein neues Kostenmodell für Laufzeit und Speicherbedarf ein, welche durch partielle dynamische Rekonfiguration verursacht wird. Es wird aufgezeigt, wie das Modell in alle Ebenen der Entwurfsoptimierung für rekonfigurierbare Hardware einbezogen werden kann. Insbesondere wird gezeigt, wie digitale Schaltungen derart auf FPGAs abgebildet werden können, sodass nur wenig Ressourcen der Hardware zur Laufzeit rekonfiguriert werden müssen. Dadurch kann Zeit, Speicher und Energie eingespart werden. Die Entwurfsoptimierung ist am effektivsten, wenn sie auf der Ebene der High-Level-Synthese angewendet wird. Diese Arbeit beschreibt, wie das Kostenmodell in ein neuartiges Werkzeug für die High-Level-Synthese integriert wurde. Das Werkzeug erlaubt es, beim Entwurf die Nutzung von FPGA-Ressourcen gegen den Rekonfigurationsaufwand abzuwägen. Es wird gezeigt, dass partielle Rekonfiguration nur wenig Kosten verursacht, wenn der Entwurf bezüglich Rekonfigurationskosten optimiert wird. Eine Anzahl von Beispielen und experimentellen Ergebnissen belegt die Vorteile der angewendeten Methodik.
55

A Framework for Secure Structural Adaptation

Saman Nariman, Goran January 2018 (has links)
A (self-) adaptive system is a system that can dynamically adapt its behavior or structure during execution to "adapt" to changes to its environment or the system itself. From a security standpoint, there has been some research pertaining to (self-) adaptive systems in general but not enough care has been shown towards the adaptation itself. Security of systems can be reasoned about using threat models to discover security issues in the system. Essentially that entails abstracting away details not relevant to the security of the system in order to focus on the important aspects related to security. Threat models often enable us to reason about the security of a system quantitatively using security metrics. The structural adaptation process of a (self-) adaptive system occurs based on a reconfiguration plan, a set of steps to follow from the initial state (configuration) to the final state. Usually, the reconfiguration plan consists of multiple strategies for the structural adaptation process and each strategy consists of several steps steps with each step representing a specific configuration of the (self-) adaptive system. Different reconfiguration strategies have different security levels as each strategy consists of a different sequence configuration with different security levels. To the best of our knowledge, there exist no approaches which aim to guide the reconfiguration process in order to select the most secure available reconfiguration strategy, and the explicit security of the issues associated with the structural reconfiguration process itself has not been studied. In this work, based on an in-depth literature survey, we aim to propose several metrics to measure the security of configurations, reconfiguration strategies and reconfiguration plans based on graph-based threat models. Additionally, we have implemented a prototype to demonstrate our approach and automate the process. Finally, we have evaluated our approach based on a case study of our making. The preliminary results tend to expose certain security issues during the structural adaptation process and exhibit the effectiveness of our proposed metrics.
56

Models, Design Methods and Tools for Improved Partial Dynamic Reconfiguration

Rullmann, Markus 26 February 2010 (has links)
Partial dynamic reconfiguration of FPGAs has attracted high attention from both academia and industry in recent years. With this technique, the functionality of the programmable devices can be adapted at runtime to changing requirements. The approach allows designers to use FPGAs more efficiently: E. g. FPGA resources can be time-shared between different functions and the functions itself can be adapted to changing workloads at runtime. Thus partial dynamic reconfiguration enables a unique combination of software-like flexibility and hardware-like performance. Still there exists no common understanding on how to assess the overhead introduced by partial dynamic reconfiguration. This dissertation presents a new cost model for both the runtime and the memory overhead that results from partial dynamic reconfiguration. It is shown how the model can be incorporated into all stages of the design optimization for reconfigurable hardware. In particular digital circuits can be mapped onto FPGAs such that only small fractions of the hardware must be reconfigured at runtime, which saves time, memory, and energy. The design optimization is most efficient if it is applied during high level synthesis. This book describes how the cost model has been integrated into a new high level synthesis tool. The tool allows the designer to trade-off FPGA resource use versus reconfiguration overhead. It is shown that partial reconfiguration causes only small overhead if the design is optimized with regard to reconfiguration cost. A wide range of experimental results is provided that demonstrates the benefits of the applied method.:1 Introduction 1 1.1 Reconfigurable Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Reconfigurable System on a Chip (RSOC) . . . . . . . . . . . . 4 1.1.2 Anatomy of an Application . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 RSOC Design Characteristics and Trade-offs . . . . . . . . . . . 7 1.2 Classification of Reconfigurable Architectures . . . . . . . . . . . . . . . 10 1.2.1 Partial Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Runtime Reconfiguration (RTR) . . . . . . . . . . . . . . . . . . . 10 1.2.3 Multi-Context Configuration . . . . . . . . . . . . . . . . . . . . . 11 1.2.4 Fine-Grain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.5 Coarse-Grain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Reconfigurable Computing Specific Design Issues . . . . . . . . . . . . 12 1.4 Overview of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Reconfigurable Computing Systems – Background 17 2.1 Examples for RSOCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Partially Reconfigurable FPGAs: Xilinx Virtex Device Family . . . . . . 20 2.2.1 Virtex-II/Virtex-II Pro Logic Architecture . . . . . . . . . . . . . 20 2.2.2 Reconfiguration Architecture and Reconfiguration Control . . 21 2.3 Methods for Design Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Behavioural Design Entry . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Design Entry at Register-Transfer Level (RTL) . . . . . . . . . . 25 2.3.3 Xilinx Early Access Partial Reconfiguration Design Flow . . . . 26 2.4 Task Management in Reconfigurable Computing . . . . . . . . . . . . . 27 2.4.1 Online and Offline Task Management . . . . . . . . . . . . . . . 28 2.4.2 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.3 Task Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.4 Reconfiguration Runtime Overhead . . . . . . . . . . . . . . . . 31 2.5 Configuration Data Compression . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Evaluation of Reconfigurable Systems . . . . . . . . . . . . . . . . . . . . 35 2.6.1 Energy Efficiency Models . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Area Efficiency Models . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.3 Runtime Efficiency Models . . . . . . . . . . . . . . . . . . . . . . 37 2.7 Similarity Based Reduction of Reconfiguration Overhead . . . . . . . . 38 2.7.1 Configuration Data Generation Methods . . . . . . . . . . . . . 39 2.7.2 Device Mapping Methods . . . . . . . . . . . . . . . . . . . . . . . 40 2.7.3 Circuit Design Methods . . . . . . . . . . . . . . . . . . . . . . . . 41 2.7.4 Model for Partial Configuration . . . . . . . . . . . . . . . . . . . 44 2.8 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Runtime Reconfiguration Cost and Optimization Methods 47 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Reconfiguration State Graph . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Reconfiguration Time Overhead . . . . . . . . . . . . . . . . . . 52 3.2.2 Dynamic Configuration Data Overhead . . . . . . . . . . . . . . 52 3.3 Configuration Cost at Bitstream Level . . . . . . . . . . . . . . . . . . . . 54 3.4 Configuration Cost at Structural Level . . . . . . . . . . . . . . . . . . . 56 3.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Virtual Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.3 Reconfiguration Costs in the VA Context . . . . . . . . . . . . . 65 3.5 Allocation Functions with Minimal Reconfiguration Costs . . . . . . . 67 3.5.1 Allocation of Node Pairs . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2 Direct Allocation of Nodes . . . . . . . . . . . . . . . . . . . . . . 76 3.5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Implementation Tools for Reconfigurable Computing 95 4.1 Mapping of Netlists to FPGA Resources . . . . . . . . . . . . . . . . . . . 96 4.1.1 Mapping to Device Resources . . . . . . . . . . . . . . . . . . . . 96 4.1.2 Connectivity Transformations . . . . . . . . . . . . . . . . . . . . 99 4.1.3 Mapping Variants and Reconfiguration Costs . . . . . . . . . . . 100 4.1.4 Mapping of Circuit Macros . . . . . . . . . . . . . . . . . . . . . . 101 4.1.5 Global Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.6 Netlist Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mapping Aware Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.1 Generalized Node Mapping . . . . . . . . . . . . . . . . . . . . . 104 4.2.2 Successive Node Allocation . . . . . . . . . . . . . . . . . . . . . 105 4.2.3 Node Allocation with Ant Colony Optimization . . . . . . . . . 107 4.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3 Netlist Mapping with Minimized Reconfiguration Cost . . . . . . . . . 110 4.3.1 Mapping Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.2 Mapping and Packing of Elements into Logic Blocks . . . . . . 112 4.3.3 Logic Element Selection . . . . . . . . . . . . . . . . . . . . . . . 114 4.3.4 Logic Element Selection for Min. Routing Reconfiguration . . 115 4.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5 High-Level Synthesis for Reconfigurable Computing 125 5.1 Introduction to HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.1 HLS Tool Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.2 Realization of the Hardware Tasks . . . . . . . . . . . . . . . . . 128 5.2 New Concepts for Task-based Reconfiguration . . . . . . . . . . . . . . 131 5.2.1 Multiple Hardware Tasks in one Reconfigurable Module . . . . 132 5.2.2 Multi-Level Reconfiguration . . . . . . . . . . . . . . . . . . . . . 133 5.2.3 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.3 Datapath Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.1 Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.2 Resource Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.3 Resource Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.3.5 Constraints for Scheduling and Resource Binding . . . . . . . . 151 5.4 Reconfiguration Optimized Datapath Implementation . . . . . . . . . . 153 5.4.1 Effects of Scheduling and Binding on Reconfiguration Costs . 153 5.4.2 Strategies for Resource Type Binding . . . . . . . . . . . . . . . 154 5.4.3 Strategies for Resource Instance Binding . . . . . . . . . . . . . 157 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.5.1 Summary of Binding Methods and Tool Setup . . . . . . . . . . 163 5.5.2 Cost Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.5.3 Implementation Scenarios . . . . . . . . . . . . . . . . . . . . . . 166 5.5.4 Benchmark Characteristics . . . . . . . . . . . . . . . . . . . . . . 168 5.5.5 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6 Summary and Outlook 185 Bibliography 189 A Simulated Annealing 201 / Partielle dynamische Rekonfiguration von FPGAs hat in den letzten Jahren große Aufmerksamkeit von Wissenschaft und Industrie auf sich gezogen. Die Technik erlaubt es, die Funktionalität von progammierbaren Bausteinen zur Laufzeit an veränderte Anforderungen anzupassen. Dynamische Rekonfiguration erlaubt es Entwicklern, FPGAs effizienter einzusetzen: z.B. können Ressourcen für verschiedene Funktionen wiederverwendet werden und die Funktionen selbst können zur Laufzeit an veränderte Verarbeitungsschritte angepasst werden. Insgesamt erlaubt partielle dynamische Rekonfiguration eine einzigartige Kombination von software-artiger Flexibilität und hardware-artiger Leistungsfähigkeit. Bis heute gibt es keine Übereinkunft darüber, wie der zusätzliche Aufwand, der durch partielle dynamische Rekonfiguration verursacht wird, zu bewerten ist. Diese Dissertation führt ein neues Kostenmodell für Laufzeit und Speicherbedarf ein, welche durch partielle dynamische Rekonfiguration verursacht wird. Es wird aufgezeigt, wie das Modell in alle Ebenen der Entwurfsoptimierung für rekonfigurierbare Hardware einbezogen werden kann. Insbesondere wird gezeigt, wie digitale Schaltungen derart auf FPGAs abgebildet werden können, sodass nur wenig Ressourcen der Hardware zur Laufzeit rekonfiguriert werden müssen. Dadurch kann Zeit, Speicher und Energie eingespart werden. Die Entwurfsoptimierung ist am effektivsten, wenn sie auf der Ebene der High-Level-Synthese angewendet wird. Diese Arbeit beschreibt, wie das Kostenmodell in ein neuartiges Werkzeug für die High-Level-Synthese integriert wurde. Das Werkzeug erlaubt es, beim Entwurf die Nutzung von FPGA-Ressourcen gegen den Rekonfigurationsaufwand abzuwägen. Es wird gezeigt, dass partielle Rekonfiguration nur wenig Kosten verursacht, wenn der Entwurf bezüglich Rekonfigurationskosten optimiert wird. Eine Anzahl von Beispielen und experimentellen Ergebnissen belegt die Vorteile der angewendeten Methodik.:1 Introduction 1 1.1 Reconfigurable Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Reconfigurable System on a Chip (RSOC) . . . . . . . . . . . . 4 1.1.2 Anatomy of an Application . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 RSOC Design Characteristics and Trade-offs . . . . . . . . . . . 7 1.2 Classification of Reconfigurable Architectures . . . . . . . . . . . . . . . 10 1.2.1 Partial Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Runtime Reconfiguration (RTR) . . . . . . . . . . . . . . . . . . . 10 1.2.3 Multi-Context Configuration . . . . . . . . . . . . . . . . . . . . . 11 1.2.4 Fine-Grain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.5 Coarse-Grain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Reconfigurable Computing Specific Design Issues . . . . . . . . . . . . 12 1.4 Overview of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Reconfigurable Computing Systems – Background 17 2.1 Examples for RSOCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Partially Reconfigurable FPGAs: Xilinx Virtex Device Family . . . . . . 20 2.2.1 Virtex-II/Virtex-II Pro Logic Architecture . . . . . . . . . . . . . 20 2.2.2 Reconfiguration Architecture and Reconfiguration Control . . 21 2.3 Methods for Design Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Behavioural Design Entry . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Design Entry at Register-Transfer Level (RTL) . . . . . . . . . . 25 2.3.3 Xilinx Early Access Partial Reconfiguration Design Flow . . . . 26 2.4 Task Management in Reconfigurable Computing . . . . . . . . . . . . . 27 2.4.1 Online and Offline Task Management . . . . . . . . . . . . . . . 28 2.4.2 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.3 Task Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.4 Reconfiguration Runtime Overhead . . . . . . . . . . . . . . . . 31 2.5 Configuration Data Compression . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Evaluation of Reconfigurable Systems . . . . . . . . . . . . . . . . . . . . 35 2.6.1 Energy Efficiency Models . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Area Efficiency Models . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.3 Runtime Efficiency Models . . . . . . . . . . . . . . . . . . . . . . 37 2.7 Similarity Based Reduction of Reconfiguration Overhead . . . . . . . . 38 2.7.1 Configuration Data Generation Methods . . . . . . . . . . . . . 39 2.7.2 Device Mapping Methods . . . . . . . . . . . . . . . . . . . . . . . 40 2.7.3 Circuit Design Methods . . . . . . . . . . . . . . . . . . . . . . . . 41 2.7.4 Model for Partial Configuration . . . . . . . . . . . . . . . . . . . 44 2.8 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Runtime Reconfiguration Cost and Optimization Methods 47 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Reconfiguration State Graph . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Reconfiguration Time Overhead . . . . . . . . . . . . . . . . . . 52 3.2.2 Dynamic Configuration Data Overhead . . . . . . . . . . . . . . 52 3.3 Configuration Cost at Bitstream Level . . . . . . . . . . . . . . . . . . . . 54 3.4 Configuration Cost at Structural Level . . . . . . . . . . . . . . . . . . . 56 3.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Virtual Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.3 Reconfiguration Costs in the VA Context . . . . . . . . . . . . . 65 3.5 Allocation Functions with Minimal Reconfiguration Costs . . . . . . . 67 3.5.1 Allocation of Node Pairs . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2 Direct Allocation of Nodes . . . . . . . . . . . . . . . . . . . . . . 76 3.5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Implementation Tools for Reconfigurable Computing 95 4.1 Mapping of Netlists to FPGA Resources . . . . . . . . . . . . . . . . . . . 96 4.1.1 Mapping to Device Resources . . . . . . . . . . . . . . . . . . . . 96 4.1.2 Connectivity Transformations . . . . . . . . . . . . . . . . . . . . 99 4.1.3 Mapping Variants and Reconfiguration Costs . . . . . . . . . . . 100 4.1.4 Mapping of Circuit Macros . . . . . . . . . . . . . . . . . . . . . . 101 4.1.5 Global Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.6 Netlist Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mapping Aware Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.1 Generalized Node Mapping . . . . . . . . . . . . . . . . . . . . . 104 4.2.2 Successive Node Allocation . . . . . . . . . . . . . . . . . . . . . 105 4.2.3 Node Allocation with Ant Colony Optimization . . . . . . . . . 107 4.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3 Netlist Mapping with Minimized Reconfiguration Cost . . . . . . . . . 110 4.3.1 Mapping Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.2 Mapping and Packing of Elements into Logic Blocks . . . . . . 112 4.3.3 Logic Element Selection . . . . . . . . . . . . . . . . . . . . . . . 114 4.3.4 Logic Element Selection for Min. Routing Reconfiguration . . 115 4.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5 High-Level Synthesis for Reconfigurable Computing 125 5.1 Introduction to HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.1 HLS Tool Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.2 Realization of the Hardware Tasks . . . . . . . . . . . . . . . . . 128 5.2 New Concepts for Task-based Reconfiguration . . . . . . . . . . . . . . 131 5.2.1 Multiple Hardware Tasks in one Reconfigurable Module . . . . 132 5.2.2 Multi-Level Reconfiguration . . . . . . . . . . . . . . . . . . . . . 133 5.2.3 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.3 Datapath Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.1 Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.2 Resource Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.3 Resource Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.3.5 Constraints for Scheduling and Resource Binding . . . . . . . . 151 5.4 Reconfiguration Optimized Datapath Implementation . . . . . . . . . . 153 5.4.1 Effects of Scheduling and Binding on Reconfiguration Costs . 153 5.4.2 Strategies for Resource Type Binding . . . . . . . . . . . . . . . 154 5.4.3 Strategies for Resource Instance Binding . . . . . . . . . . . . . 157 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.5.1 Summary of Binding Methods and Tool Setup . . . . . . . . . . 163 5.5.2 Cost Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.5.3 Implementation Scenarios . . . . . . . . . . . . . . . . . . . . . . 166 5.5.4 Benchmark Characteristics . . . . . . . . . . . . . . . . . . . . . . 168 5.5.5 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6 Summary and Outlook 185 Bibliography 189 A Simulated Annealing 201
57

Metodologie pro návrh číslicových obvodů se zvýšenou spolehlivostí / Methodology of highly reliable systems design

Straka, Martin January 2013 (has links)
In the thesis, a methodology alternative to existing methods of digital systems design with increased dependability implemented into FPGA is presented, new features which can be used in the implementation and testing of these systems are demonstrated. The research is based on the use of FPGA partial dynamic reconfiguration for the design of fault tolerant systems. In these applications, the partial dynamic reconfiguration can be used as a mechanism to correct the fault and recover the system after the fault occurrence. First, the general principles of diagnostics, testing and digital systems dependability are presented including a brief description of FPGA components and their architectures. Next, a survey of currently used methods and techniques used for the design and implementation of fault tolerant systems into FPGA is described, especially the methods used for fault detection and localization, their correction, together with the principles of evaluating fault tolerant systems design quality.  The most important part of the thesis is seen in the description of the design methodology, implementation and testing of fault tolerant systems implemented into FPGAs which uses SRAMs as the configuration memory. First, the methodology of developing and automated checker components design for digital systems and communication protocols is presented. Then, a reference architecture of a dependable system implemented into FPGA is demonstrated including several fault tolerant architectures based on the use of partial dynamic reconfiguration as the mechanism of fault correction and the recovery from it. The principles of controlling the reconfiguration process are described together with the description of the test platform which allows to test and verify the design of fault tolerant systems based on the methodology presented in the thesis. The experimental results and the contribution of the thesis are discussed in the conclusions.

Page generated in 0.0858 seconds