Spelling suggestions: "subject:"_dynamic apectrum"" "subject:"_dynamic espectrum""
61 |
Self-organizing Dynamic Spectrum Management: Novel Scheme for Cognitive Radio Networks.Khozeimeh, Farhad 04 1900 (has links)
<p>A cognitive radio network is a multi-user system, in which different radio units compete for limited resources in an opportunistic manner, interacting with each other for access to the available resources. The fact that both users and spectrum holes (i.e., under-utilized spectrum sub-bands) can come and go in a stochastic manner, makes a cognitive radio network a highly non- stationary, dynamic and challenging wireless environment. Finding robust decentralized resource-allocation algorithms, which are capable of achieving reasonably good solutions fast enough in order to guarantee an acceptable level of performance, is crucial in such an environment. In this thesis, a novel dynamic spectrum management (DSM) scheme for cognitive radio networks, termed the self-organizing dynamic spectrum management (SO-DSM), is described and its practical validity is demonstrated using computer simulations. In this scheme, CRs try to exploit the primary networks’ unused bands and establish link with neighbouring CRs using those bands. Inspired by human brain, the CRs extract and memorize primary network’s and other CRs’ activity patterns and create temporal channel assignments on sub-bands with no recent primary user activities using self-organizing maps (SOM) technique. The proposed scheme is decentralized and employs a simple learning rule with low complexity and minimal memory requirements. A software testbed was developed to simulate and study the proposed scheme. This testbed is capable of simulating CR network alongside of a cellular legacy network. In addition to SO-DSM, two other DSM schemes, namely centralized DSM and no-learning decentralized DSM, can be used for CR networks in this software testbed. The software testbed was deployed on parallel high capacity computing clusters from Sharcnet to perform large scale simulations of CR network. The simulation results show, comparing to centralized DSM and minority game DSM (MG-DSM), the SO-DSM decreases the probability of collision with primary users and also probability of CR link interruption significantly with a moderate decrease in CR network spectrum utilization.</p> / Doctor of Philosophy (PhD)
|
62 |
Island Genetic Algorithm-based Cognitive NetworksEl-Nainay, Mustafa Y. 24 July 2009 (has links)
The heterogeneity and complexity of modern communication networks demands coupling network nodes with intelligence to perceive and adapt to different network conditions autonomously. Cognitive Networking is an emerging networking research area that aims to achieve this goal by applying distributed reasoning and learning across the protocol stack and throughout the network. Various cognitive node and cognitive network architectures with different levels of maturity have been proposed in the literature. All of them adopt the idea of coupling network devices with sensors to sense network conditions, artificial intelligence algorithms to solve problems, and a reconfigurable platform to apply solutions. However, little further research has investigated suitable reasoning and learning algorithms.
In this dissertation, we take cognitive network research a step further by investigating the reasoning component of cognitive networks. In a deviation from previous suggestions, we suggest the use of a single flexible distributed reasoning algorithm for cognitive networks. We first propose an architecture for a cognitive node in a cognitive network that is general enough to apply to future networking challenges. We then introduce and justify our choice of the island genetic algorithm (iGA) as the distributed reasoning algorithm.
Having introduced our cognitive node architecture, we then focus on the applicability of the island genetic algorithm as a single reasoning algorithm for cognitive networks. Our approach is to apply the island genetic algorithm to different single and cross layer communication and networking problems and to evaluate its performance through simulation. A proof of concept cognitive network is implemented to understand the implementation challenges and assess the island genetic algorithm performance in a real network environment. We apply the island genetic algorithm to three problems: channel allocation, joint power and channel allocation, and flow routing. The channel allocation problem is a major challenge for dynamic spectrum access which, in turn, has been the focal application for cognitive radios and cognitive networks. The other problems are examples of hard cross layer problems.
We first apply the standard island genetic algorithm to a channel allocation problem formulated for the dynamic spectrum cognitive network environment. We also describe the details for implementing a cognitive network prototype using the universal software radio peripheral integrated with our extended implementation of the GNU radio software package and our island genetic algorithm implementation for the dynamic spectrum channel allocation problem. We then develop a localized variation of the island genetic algorithm, denoted LiGA, that allows the standard island genetic algorithm to scale and apply it to the joint power and channel allocation problem. In this context, we also investigate the importance of power control for cognitive networks and study the effect of non-cooperative behavior on the performance of the LiGA.
The localized variation of the island genetic algorithm, LiGA, is powerful in solving node-centric problems and problems that requires only limited knowledge about network status. However, not every communication and networking problems can be solved efficiently in localized fashion. Thus, we propose a generalized version of the LiGA, namely the K-hop island genetic algorithm, as our final distributed reasoning algorithm proposal for cognitive networks. The K-hop island genetic algorithm is a promising algorithm to solve a large class of communication and networking problems with controllable cooperation and migration scope that allows for a tradeoff between performance and cost. We apply it to a flow routing problem that includes both power control and channel allocation. For all problems simulation results are provided to quantify the performance of the island genetic algorithm variation. In most cases, simulation and experimental results reveal promising performance for the island genetic algorithm.
We conclude our work with a discussion of the shortcomings of island genetic algorithms without guidance from a learning mechanism and propose the incorporation of two learning processes into the cognitive node architecture to solve slow convergence and manual configuration problems. We suggest the cultural algorithm framework and reinforcement learning techniques as candidate leaning techniques for implementing the learning processes. However, further investigation and implementation is left as future work. / Ph. D.
|
63 |
Spectrum-Aware Orthogonal Frequency Division MultiplexingRecio, Adolfo Leon 30 December 2010 (has links)
Reconfigurable computing architectures are well suited for the dynamic data flow processing requirements of software-defined radio. The software radio concept has quickly evolved to include spectrum sensing, awareness, and cognitive algorithms for machine learning resulting in the cognitive radio model.
This work explores the application of reconfigurable hardware to the physical layer of cognitive radios using non-contiguous multi-carrier radio techniques. The practical tasks of spectrum sensing, frame detection, synchronization, channel estimation, and mutual interference mitigation are challenges in the communications and the computing fields that are addressed to optimally utilize the capacity of opportunistically allocated spectrum bands.
FPGA implementations of parameterizable OFDM and filter bank multi-carrier (FBMC) radio prototypes with spectrum awareness and non-contiguous sub-carrier allocation were completed and tested over-the-air. Sub-carrier sparseness assumptions were validated under practical implementation and performance considerations. A novel algorithm for frame detection and synchronization with mutual interference rejection applicable to the FBMC case was proposed and tested. / Ph. D.
|
64 |
Exploiting Cyclostationarity for Radio Environmental Awareness in Cognitive RadiosKim, Kyou Woong 09 July 2008 (has links)
The tremendous ongoing growth of wireless digital communications has raised spectrum shortage and security issues. In particular, the need for new spectrum is the main obstacle in continuing this growth. Recent studies on radio spectrum usage have shown that pre-allocation of spectrum bands to specific wireless communication applications leads to poor utilization of those allocated bands. Therefore, research into new techniques for efficient spectrum utilization is being aggressively pursued by academia, industry, and government. Such research efforts have given birth to two concepts: Cognitive Radio (CR) and Dynamic Spectrum Access (DSA) network. CR is believed to be the key enabling technology for DSA network implementation. CR based DSA (cDSA) networks utilizes white spectrum for its operational frequency bands. White spectrum is the set of frequency bands which are unoccupied temporarily by the users having first rights to the spectrum (called primary users). The main goal of cDSA networks is to access of white spectrum. For proper access, CR nodes must identify the right cDSA network and the absence of primary users before initiating radio transmission. To solve the cDSA network access problem, methods are proposed to design unique second-order cyclic features using Orthogonal Frequency Division Multiplexing (OFDM) pilots. By generating distinct OFDM pilot patterns and measuring spectral correlation characteristics of the cyclostationary OFDM signal, CR nodes can detect and uniquely identify cDSA networks. For this purpose, the second-order cyclic features of OFDM pilots are investigated analytically and through computer simulation. Based on analysis results, a general formula for estimating the dominant cycle frequencies is developed. This general formula is used extensively in cDSA network identification and OFDM signal detection, as well as pilot pattern estimation. CR spectrum awareness capability can be enhanced when it can classify the modulation type of incoming signals at low and varying signal-to-noise ratio. Signal classification allows CR to select a suitable demodulation process at the receiver and to establish a communication link. For this purpose, a threshold-based technique is proposed which utilizes cycle-frequency domain profile for signal detection and feature extraction. Hidden Markov Models (HMMs) are proposed for the signal classifier.
The spectrum awareness capability of CR can be undermined by spoofing radio nodes. Automatic identification of malicious or malfunctioning radio signal transmitters is a major concern for CR information assurance. To minimize the threat from spoofing radio devices, radio signal fingerprinting using second-order cyclic features is proposed as an approach for Specific Emitter Identification (SEI). The feasibility of this approach is demonstrated through the identification of IEEE 802.11a/g OFDM signals from different Wireless Local Area Network (WLAN) card manufactures using HMMs. / Ph. D.
|
65 |
Ex Ante Approaches for Security, Privacy, and Enforcement in Spectrum SharingBahrak, Behnam 17 December 2013 (has links)
Cognitive radios (CRs) are devices that are capable of sensing the spectrum and using its free portions in an opportunistic manner. The free spectrum portions are referred to as white spaces or spectrum holes. It is widely believed that CRs are one of the key enabling technologies for realizing a new regulatory spectrum management paradigm, viz. dynamic spectrum access (DSA). CRs often employ software-defined radio (SDR) platforms that are capable of executing artificial intelligence (AI) algorithms to reconfigure their transmission/reception (TX/RX) parameters to communicate efficiently while avoiding interference with licensed (a.k.a. primary or incumbent) users and unlicensed (a.k.a. secondary or cognitive) users.
When different stakeholders share a common resource, such as the case in spectrum sharing, security, privacy, and enforcement become critical considerations that affect the welfare of all stakeholders. Recent advances in radio spectrum access technologies, such as CRs, have made spectrum sharing a viable option for significantly improving spectrum utilization efficiency. However, those technologies have also contributed to exacerbating the difficult problems of security, privacy and enforcement. In this dissertation, we review some of the critical security and privacy threats that impact spectrum sharing. We also discuss ex ante (preventive) approaches which mitigate the security and privacy threats and help spectrum enforcement. / Ph. D.
|
66 |
Medium Access Control in Cognitive Radio NetworksBian, Kaigui 29 April 2011 (has links)
Cognitive radio (CR) is seen as one of the enabling technologies for realizing a new regulatory spectrum management paradigm, viz. opportunistic spectrum sharing (OSS). In the OSS paradigm, unlicensed users (a.k.a. secondary users) opportunistically operate in fallow licensed spectrum on a non-interference basis to licensed users (a.k.a. incumbent or primary users). Incumbent users have absolute priority in licensed bands, and secondary users must vacate the channel where incumbent user signals are detected. A CR network is composed of secondary users equipped with CRs and it can coexist with incumbent users in licensed bands under the OSS paradigm. The coexistence between incumbent users and secondary users is referred to as incumbent coexistence, and the coexistence between CR networks of the same type is referred to as self-coexistence.
In this dissertation, we address three coexistence-related problems at the medium access control (MAC) layer in CR networks: (1) the rendezvous (control channel) establishment problem, (2) the channel assignment problem in an ad hoc CR network, and (3) the spectrum sharing problem between infrastructure-based CR networks, i.e., the 802.22 wireless regional area networks (WRANs). Existing MAC layer protocols in conventional wireless networks fail to adequately address the key issues concerning incumbent and self coexistence that emerge in CR networks. To solve the rendezvous establishment problem, we present a systematic approach, based on quorum systems, for designing channel hopping protocols that ensure a pair of CRs to "rendezvous" within an upper-bounded time over a common channel that is free of incumbent user signals. In a single radio interface, ad hoc CR network, we propose a distributed channel assignment scheme that assigns channels at the granularity of "segments" for minimizing the channel switching overhead. By taking into account the coexistence requirements, we propose an inter-network spectrum sharing protocol that enables the sharing of vacant TV white space among coexisting WRANs. Our analytical and simulation results show that these proposed schemes can effectively address the aforementioned MAC layer coexistence problems in CR networks. / Ph. D.
|
67 |
Spectrum Opportunity Duration Assurance: A Primary-Secondary Cooperation Approach for Spectrum Sharing SystemsSohul, Munawwar Mahmud 05 September 2017 (has links)
The radio spectrum dependent applications are facing a huge scarcity of the resource. To address this issue, future wireless systems require new wireless network architectures and new approaches to spectrum management. Spectrum sharing has emerged as a promising solution to address the radio frequency (RF) spectrum bottleneck. Although spectrum sharing is intended to provide flexible use of the spectrum, the architecture of the existing approaches, such as TV White Space [1] and Citizen Broadband Radio Services (CBRS) [2], have a relatively fixed sharing framework. This fixed structure limits the applicability of the architecture to other bands where the relationship between various new users and different types of legacy users co-exist. Specifically, an important aspect of sharing that has not been explored enough is the cooperation between the resource owner and the opportunistic user. Also in a shared spectrum system, the users do not have any information about the availability and duration of the available spectrum opportunities. This lack of understanding about the shared spectrum leads the research community to explore a number of core spectrum sharing tasks, such as opportunity detection, dynamic opportunity scheduling, and interference protection for the primary users, etc. This report proposes a Primary-Secondary Cooperation Framework to provide flexibility to all the involved parties in terms of choosing the level of cooperation that allow them to satisfy different objective priorities. The cooperation framework allows exchange of a probabilistic assurance: Spectrum Opportunity Duration Assurance (SODA) between the primary and secondary operations to improve the overall spectrum sharing experience for both the parties. This capability will give the spectrum sharing architectures new flexibility to handle evolutions in technologies, regulations, and the requirements of new bands being transitioned from fixed to share usage.
In this dissertation we first look into the regulatory aspect of spectrum sharing. We analyze the Federal Communications Commission's (FCC) initiatives with regards to the commercial use of the 150 MHz spectrum block in the 3.5 GHz band. This analysis results into a Spectrum Access System (SAS) architecture and list of required functionalities. Then we address the nature of primary-secondary cooperation in spectrum sharing and propose to generate probabilistic assurances for spectrum opportunities. We use the generated assurance to observe the impact of cooperation from the perspective of spectrum sharing system management. We propose to incorporate primary user cooperation in the auctioning and resource allocation procedures to manage spectrum opportunities. We also analyze the improvement in spectrum sharing experience from the perspective of the primary and secondary users as a result of cooperation. We propose interference avoidance schemes that involve cooperation to improve the achievable quality of service.
Primary-secondary cooperation has the potential to significantly influence the mechanism and outcomes of the spectrum sharing systems. Both the primary and secondary operations can benefit from cooperation in a sharing scenario. Based on the priorities of the primary and secondary operations, the users may decide on the level of cooperation that they are willing to participate. Also access to information about the availability and usability of the spectrum opportunity will result in efficient spectrum opportunity management and improved sharing performance for both the primary and secondary users. Thus offering assurances about the availability and duration of spectrum opportunity through primary-secondary cooperation will significantly improve the overall spectrum sharing experience. The research reported in this dissertation is expected to provide a fundamental analytical framework for characterizing and quantifying the implications of primary-secondary cooperation in a spectrum sharing context. It analyzes the technical challenges in modeling different level of cooperation and their impact on the spectrum sharing experience. We hope that this dissertation will establish the fundamentals of the spectrum sharing to allow the involved parties to participate in sharing mechanisms that is suitable to their objective priorities. / PHD / As the world of technology steps into the era of ubiquitous communication to anything and everything, a system's ability to wirelessly communicate in a heterogeneous environment plays a significant role in shaping our ways of life. The wireless communication systems and standards are evolving at an unprecedented rate to cope up with the explosive growth for uninterrupted mobile broadband service demand and the increasing diversity of high quality of service (QoS) use cases ranging from social communication and professional networking to cyber security and public safety. The rapid evolution of wireless communication systems and service applications has resulted in high demand for new and dedicated spectrum blocks in both the licensed and unlicensed bands. Also the predicted future wireless systems and applications indicate important characteristics of future broadband traffic demand: nomadic and sporadic bursty demand. But the existing static spectrum assignment limits the potential of the radio frequency spectrum resource. It imposes the challenge of spectrum scarcity onto radio spectrum dependent applications and technologies. This unprecedented increase in mobile data traffic along with the nomadic and sporadic bursts in data demand will disruptively shape the spectrum usage philosophy of the future wireless communication networks. It calls for new wireless network architectures and new approaches to spectrum management. Spectrum sharing has emerged as a promising solution to address the radio frequency (RF) spectrum bottleneck. Although spectrum sharing is intended to provide flexible use of the spectrum, the architecture of the existing approaches have a relatively fixed structure in the mechanism for which spectrum is shared. This fixed structure limits the applicability of the architecture to other bands where the relationship between various new users and different types of legacy users co-exist. Specifically, an important aspect of sharing that has not been explored enough is the cooperation between the resource owner and the opportunistic user. Also in a shared spectrum system, the users do not have any information about the availability and duration of the available spectrum opportunities. This lack of understanding about the shared spectrum leads the research community to explore a number of core spectrum sharing tasks, such as opportunity detection, dynamic opportunity scheduling, and interference protection for the primary users, etc.
In this dissertation we propose a Primary-Secondary Cooperation Framework that provides flexibility to all the involved parties in terms of choosing the level of cooperation and allow them to satisfy different objective priorities. The cooperation framework allows exchange of a probabilistic assurance: Spectrum Opportunity Duration Assurance (SODA) between the primary and secondary operations to improve the overall spectrum sharing experience for both the parties. This capability will give the spectrum sharing architectures new flexibility to handle evolutions in technologies, regulations, and the requirements of new bands being transitioned from fixed to share usage. Based on their operational priorities, the users may decide on the level of cooperation that they are willing to participate. Also access to information about the availability and usability of the spectrum opportunity influences the mechanism and outcomes of the spectrum sharing systems to benefit both the Primary and Secondary users. Thus offering assurances about the availability and duration of spectrum opportunity through primary-secondary cooperation will significantly improve the overall spectrum sharing experience. The research reported in this dissertation is expected to provide a fundamental analytical framework for characterizing and quantifying the implications of primary-secondary cooperation in a spectrum sharing context. It analyzes the technical challenges in modeling different level of cooperation and their impact on the spectrum sharing experience. We hope that this dissertation will establish the fundamentals of the spectrum sharing to allow the involved parties to participate in sharing mechanisms that is suitable to their objective priorities.
|
68 |
Toward Privacy-Preserving and Secure Dynamic Spectrum AccessDou, Yanzhi 19 January 2018 (has links)
Dynamic spectrum access (DSA) technique has been widely accepted as a crucial solution to mitigate the potential spectrum scarcity problem. Spectrum sharing between the government incumbents and commercial wireless broadband operators/users is one of the key forms of DSA. Two categories of spectrum management methods for shared use between incumbent users (IUs) and secondary users (SUs) have been proposed, i.e., the server-driven method and the sensing-based method. The server-driven method employs a central server to allocate spectrum resources while considering incumbent protection. The central server has access to the detailed IU operating information, and based on some accurate radio propagation model, it is able to allocate spectrum following a particular access enforcement method. Two types of access enforcement methods -- exclusion zone and protection zone -- have been adopted for server-driven DSA systems in the current literature. The sensing-based method is based on recent advances in cognitive radio (CR) technology. A CR can dynamically identify white spaces through various incumbent detection techniques and reconfigure its radio parameters in response to changes of spectrum availability. The focus of this dissertation is to address critical privacy and security issues in the existing DSA systems that may severely hinder the progress of DSA's deployment in the real world.
Firstly, we identify serious threats to users' privacy in existing server-driven DSA designs and propose a privacy-preserving design named P²-SAS to address the issue. P²-SAS realizes the complex spectrum allocation process of protection-zone-based DSA in a privacy-preserving way through Homomorphic Encryption (HE), so that none of the IU or SU operation data would be exposed to any snooping party, including the central server itself.
Secondly, we develop a privacy-preserving design named IP-SAS for the exclusion-zone- based server-driven DSA system. We extend the basic design that only considers semi- honest adversaries to include malicious adversaries in order to defend the more practical and complex attack scenarios that can happen in the real world.
Thirdly, we redesign our privacy-preserving SAS systems entirely to remove the somewhat- trusted third party (TTP) named Key Distributor, which in essence provides a weak proxy re-encryption online service in P²-SAS and IP-SAS. Instead, in this new system, RE-SAS, we leverage a new crypto system that supports both a strong proxy re-encryption notion and MPC to realize privacy-preserving spectrum allocation. The advantages of RE-SAS are that it can prevent single point of vulnerability due to TTP and also increase SAS's service performance dramatically.
Finally, we identify the potentially crucial threat of compromised CR devices to the ambient wireless infrastructures and propose a scalable and accurate zero-day malware detection system called GuardCR to enhance CR network security at the device level. GuardCR leverages a host-based anomaly detection technique driven by machine learning, which makes it autonomous in malicious behavior recognition. We boost the performance of GuardCR in terms of accuracy and efficiency by integrating proper domain knowledge of CR software. / Ph. D. / With the rapid development of wireless technologies in recent years, wireless spectrum which all the wireless communication signals travel over is becoming the bottleneck of the fast growing wireless market. The spectrum scarcity problem is largely due to the current spectrum allocation scheme. Some spectrum bands, like the cellular bands, are overly crowded, while some government-held spectrum bands are used inadequately. By allowing users from the crowded spectrum bands to dynamically access to those less frequently used spectrum bands, the spectrum scarcity problem can be significantly alleviated. However, there are two critical issues that hinder the application of dynamic spectrum access in the real world: privacy and security. For privacy, in order to determine when, where, and how the spectrum can be reused, users need to bear the risk of sharing their sensitive operation data. This is especially frustrating for governmental and military parties whose operation data is highly classified. We solve the privacy problem by designing a privacy-preserving dynamic spectrum access system. The system is based on secure multi-party computation, which keeps users’ input operation data private when performing spectrum allocation computation over those inputs. The system achieves 128-bit industry-level security strength, and it is also computation and memory efficient for real-world deployment. For security, dynamic spectrum access requires radio devices to contain many software components so that the radio devices can be dynamically programmed to access different spectrum bands. However, the software also exposes the radio devices to the risk of malware infection. We develop a malware detection system to capture the anomalous behaviors in radio software executions. By adopting advanced machine learning techniques, our system is even able to detect first-seen malware.
|
69 |
Software Radio-Based Decentralized Dynamic Spectrum Access Networks: A Prototype Design and Enabling TechnologiesGe, Feng 11 December 2009 (has links)
Dynamic spectrum access (DSA) wireless networks focus on using RF spectrum more efficiently and dynamically. Significant progress has been made during the past few years. For example, many measurements of current spectrum utilization are available. Theoretical analyses and computational simulations of DSA networks also abound. In sharp contrast, few network systems, particularly those with a decentralized structure, have been built even at a small scale to investigate the performance, behavior, and dynamics of DSA networks under different scenarios. This dissertation provides the theory, design, and implementation of a software radio-based decentralized DSA network prototype, and its enabling technologies: software radio, signal detection and classification, and distributed cooperative spectrum sensing.
By moving physical layer functions into the software domain, software radio offers an unprecedented level of flexibility in radio development and operation, which can facilitate research and development of cognitive radio (CR) and DSA networks. However, state-of-the-art software radio systems still have serious performance limitations. Therefore, a performance study of software radio is needed before applying it in any development. This dissertation investigates three practical issues governing software radio performance that are critical in DSA network development: RF front end nonlinearity, dynamic computing resource allocation, and execution latency. It provides detailed explanations and quantitative results on SDR performance.
Signal detection is the most popular method used in DSA networks to guarantee non-interference to primary users. Quickly and accurately detecting signals under all possible conditions is challenging. The cyclostationary feature detection method is attractive for detecting primary users because of its ability to distinguish between modulated signals, interference, and noise at a low signal-to-noise ratio (SNR). However, a key issue of cyclostationary signal analysis is the high computational cost. To tackle this challenge, parallel computing is applied to develop a cyclostationary feature based signal detection method. This dissertation presents the method's performance on multiple signal types in noisy and multi-path fading environments.
Distributed cooperative spectrum sensing is widely endorsed to monitor the radio environment so as to guarantee non-interference to incumbent users even at a low SNR and under hostile conditions like shadowing, fading, interference, and multi-path. However, such networks impose strict performance requirements on data latency and reliability. Delayed or faulty data may cause secondary users to interfere with incumbent users because secondary users could not be informed quickly or reliably. To support such network performance, this dissertation presents a set of data process and management schemes in both sensors and data fusion nodes. Further, a distributed cooperative sensor network is built from multiple sensors; together, the network compiles a coherent semantic radio environment map for DSA networks to exploit available frequencies opportunistically.
Finally, this dissertation presents the complete design of a decentralized and asynchronous DSA network across the PHY layer, MAC layer, network layer, and application layer. A ten-node prototype is built based on software radio technologies, signal detection and classification methods, distributed cooperative spectrum sensing systems, dynamic wireless protocols, and a multi-channel allocation algorithm. Systematic experiments are carried out to identify several performance determining factors for decentralized DSA networks. / Ph. D.
|
70 |
Frequency synthesis for cognitive multi-radio / Synthèse de fréquence dans une architecture multi-radio cognitiveValenta, Václav 12 November 2010 (has links)
Cette thèse porte sur les aspects de conception d'un synthétiseur de fréquence pour les émetteurs-récepteurs dans les architectures multi-radios cognitives. La largeur de bande couverte par ce synthétiseur multi-radio correspond à la bande de fréquences des normes de communication sans fil les plus diffusées, fonctionnant dans la bande de fréquence de 800 MHz à 6 GHz. Du fait que l'opération multi-standard est indispensable, le synthétiseur doit répondre aux exigences les plus strictes et parfois contradictoires. Compte tenu de ces exigences, une nouvelle approche pour une synthèse de fréquence multi-mode a été conçue. Un synthétiseur de fréquence hybride, basé sur le principe de la boucle à verrouillage de phase a été proposé et un nouveau protocole de commutation a été présenté et validé sur une carte d'évaluation expérimentale. Cette approche combine les modes fractionnel et entier avec une topologie de filtre à bande commuté. Par rapport aux techniques standard, la configuration hybride permet une grande souplesse en matière de reconfiguration et d'ailleurs, elle offre une complexité des circuits relativement faible ainsi qu'une faible consommation électrique. Cette architecture assure la reconfiguration de la bande passante de la boucle ainsi que la résolution, le niveau du bruit de phase et du temps d'accrochage et, par conséquent, elle peut s'adapter à des besoins divers, imposés par les normes concernées. Des analyses correspondantes, des simulations et des mesures ont été réalisées afin de vérifier les performances et les fonctionnalités de la solution proposée. A part la conception du synthétiseur de fréquence multi-radio, une campagne de mesures régionales de l'utilisation du spectre radio a été réalisée dans le cadre de la recherche de cette thèse. Ces mesures sont fondées sur le principe de détection de l'énergie et nous démontrent le degré d'utilisation du spectre radio dans les différentes régions, notamment dans la ville de Brno en République Tchèque et dans la ville de Paris et sa banlieue en France. L'objectif de cette campagne de mesures expérimentales a été d'estimer le degré d'utilisation du spectre radio dans des environnements différents et de souligner le fait qu'une nouvelle approche pour la gestion du spectre radio est inévitable / This doctoral thesis deals with design aspects of a reconfigurable frequency synthesizer for flexible radio transceivers in future cognitive multi-radios. The frequency bandwidth to be covered by this multi-radio synthesizer corresponds to the frequency bands of the most diffused wireless communication standards in the frequency band 800 MHz to 6 GHz. Since multi-standard operation is required, the synthesizer must fulfil the most stringent and sometimes conflicting requirements. Given these requirements, a novel approach for multi-mode frequency synthesis has been conceived. A hybrid phase locked loop based frequency synthesizer has been proposed and a novel switching protocol has been presented and validated on an experimental evaluation board. This approach combines fractional-N and integer-N modes of operation with switched loop filter topology. Compared to standard PLL techniques, the hybrid configuration provides a great flexibility in terms of reconfiguration and moreover, it offers relatively low circuit complexity and low power consumption. This architecture provides reconfiguration of the loop bandwidth, frequency resolution, phase noise and settling time performance and hence, it can adapt itself to diverse requirements given by the concerned wireless communication standards. Corresponding analyses, simulations and measurements have been carried out in order to verify the performance and functionality of the proposed solution. A part from the design of the multiband frequency synthesizer, a set of regional measurements of the radio spectrum utilization has been carried out in the framework of this dissertation research. These measurements are based on the energy detection principle and provide a close look at the degree of radio spectrum utilization in different regions, namely in the city of Brno in the Czech Republic and in the city of Paris and one of its suburbs in France. The goal of the experimental measurement campaign has been to estimate the degree of radio spectrum usage in a particular environment and to point out the fact that a new approach for radio spectrum management is inevitable
|
Page generated in 0.198 seconds