• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Effects on Migration of Light Non-Aqueous Phase Liquids in Subsurface / 地盤中の低比重非水溶性流体の動的移動特性の評価

Muhd Harris Bin Ramli 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(地球環境学) / 甲第18487号 / 地環博第121号 / 新制||地環||25(附属図書館) / 31365 / 京都大学大学院地球環境学舎環境マネジメント専攻 / (主査)教授 勝見 武, 准教授 田中 周平, 准教授 乾 徹 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
2

Form and Function of Coastal Areas

Lindgren, Dan January 2011 (has links)
Coastal waters have high biological productivity and provide goods and services with a high monetary value. Coasts are used by many different stakeholders and are often densely populated. These factors put coastal ecosystems under heavy environmental pressure and place high demands on politicians and coastal managers, who need suitable tools to facilitate decision-making. Geographic information systems and predictive mass balance models are two such tools, and the form of coastal areas (morphometry) is an important component of both tools in coastal management. In this thesis it was shown that the form and function of coastal areas are interrelated in a number of ways. Morphometric parameters can be used to identify coastal areas that are more sensitive to pollution, or that potentially have higher ecological value; and morphometric analysis is an essential part of mass balance modeling. New ways of using morphometry for estimation of benthic production potential were presented and tested. It was shown that there are great differences in benthic production potential among Swedish coastal areas and regions. Different morphometric descriptors of openness were developed and tested; these can be used in habitat mapping or for prediction of sediment bottom types. Significant correlation was found between the morphometric properties of coastal areas, the proportion of accumulation bottom areas and the critical depth. Statistical models for prediction of accumulation bottom areas and critical depth were also obtained using multiple regression. Large differences were found in empirical values of bottom dynamic conditions from two different sources. Algorithms from a well tested mass balance model were adapted for modeling salt in the Baltic Sea. This enabled calculation of water exchange between five basins on a monthly time scale, which can be of use in future modeling studies. The study included morphometric analysis for structuring the model and for calculation of input data.
3

Expérimentation et modélisation dynamiques de réacteurs catalytiques : vers une meilleure description du processus catalytique / Experimentation and modeling of catalytic reactors under dynamic conditions : towards a better description of the catalytic process

Urmès, Caroline 31 October 2018 (has links)
L'étude cinétique d'une réaction catalytique permet une meilleure compréhension du mécanisme réactionnel et du fonctionnement du catalyseur. Elle est nécessaire pour le dimensionnement des réacteurs et des procédés. Les modèles micro-cinétiques sont constitués d'une séquence d'étapes élémentaires sans hypothèses sur les étapes cinétiquement déterminantes. Ces modèles sont applicables sur des plages de conditions opératoires plus larges que celles des modèles plus classiques de type Langmuir-Hinshelwood (LH) ou d'Hougen-Watson. Lorsqu'ils sont implémentés dans un modèle de réacteur, ils permettent d'obtenir une plus grande précision vis-à-vis du dimensionnement du catalyseur et du réacteur. Cependant, cette approche nécessite un nombre d'expériences plus élevé pour estimer les nombreux paramètres cinétiques qui le constituent. Ce travail de thèse porte sur le développement de modèles micro-cinétiques de systèmes catalytiques en exploitant les informations obtenues lorsque le catalyseur fonctionne en régime transitoire. En effet, l'expérimentation en régime transitoire, en comparaison avec celle classiquement réalisée en régime stationnaire, permet d'accéder à plus d'informations par une meilleure sensibilisation des réactions mises en jeu. Les études cinétiques en régime permanent sont plutôt adaptées pour des modèles cinétiques globaux qui considèrent un nombre limité d'étapes cinétiquement déterminantes (en général une seule). De ce fait, la compréhension du mécanisme réactionnel [1], la connaissance du nombre de types de sites actifs mis en jeu ou encore la détermination des vitesses de réaction des étapes élémentaires restent imprécises. Afin d'accéder aux différentes vitesses de réaction des étapes élémentaires, il est nécessaire de réaliser un grand nombre d'expériences en régime permanent, ce qui est très coûteux en temps et en argent. L'expérimentation en régime transitoire est donc une alternative qui permet d'accéder à des informations cinétiques détaillées dans un délai plus rapide. Cependant, l'interprétation des expériences est plus fastidieuse puisqu'elle nécessite le développement de modèles dynamiques de réacteur. Ces études consistent à réaliser des perturbations sous forme de pulses, d'échelons ou bien d'oscillations périodiques d'un certain nombre de paramètres d'état tels que la concentration des réactifs, la pression ou encore la température. Dans ces travaux, des oscillations périodiques de concentration sont réalisées en entrée de réacteur. Ce choix permet de réaliser des variations autour de l'état stationnaire, dans des conditions proches des celles utilisées dans l'industrie. La mise en place et la validation de cette méthodologie ont été réalisées pour un système catalytique réactionnel d'intérêt industriel : l'hydrogénation sélective de l'acétylène. Cette réaction a lieu en phase gaz au contact d'un catalyseur solide et présente l'avantage de mettre en jeu peu de composés facilement analysables. Une voie importante pour la production d'éthylène est le vapocraquage. L'éthylène produit par ce procédé contient de faibles quantités d'acétylène qu'il faut éliminer car il constitue un poison pour les procédés catalytiques en aval. Cette élimination se fait par l'hydrogénation sélective de l'acétylène, en présence d'éthylène, en employant un catalyseur à base de palladium. C'est une réaction rapide dont le mécanisme réactionnel n'est pas encore complètement connu.La cinétique transitoire permet non seulement d'étudier les réactions chimiques mais également de caractériser le transport des réactifs et des produits, de l'échelle du lit catalytique à l'échelle des pores du catalyseur. Un modèle de réacteur incluant un modèle cinétique a été développé pour expliquer les données expérimentales obtenues sur un réacteur pilote. Des manipulations en régime transitoires et une modélisation dynamique de l'unité pilote incluant un modèle micro-cinétique sont réalisées [etc...] / Kinetic experiments performed under stationary conditions mainly give information on the rate determining step. Numerous experiments must be done to estimate a limited number of parameters. Unsteady-state experiments, on the other hand, give more detailed information about the kinetics of the different elementary steps with a small number of experiments. In order to work under dynamic conditions, a perturbation of a process variable (concentration, pressure, temperature, etc.) is introduced at the reactor entrance (pulse, step, oscillation ...). This study explores periodic sinusoidal variations of the flow to obtain kinetics for heterogeneous catalytic processes. The kinetic information is contained in the phase lag and the gain change of the oscillations. The oscillations can be kept small and can be performed around steady-state operation, thus studying the kinetics under relevant conditions. First a model able to directly estimate the gain and phase lag has been created. Secondly, simple cases of adsorption have been performed in order to validate the model and to test the experimental set up. To finish, the approach has been applied to the selective hydrogenation of acetylene. Kinetic modeling was carried out in both stationary and dynamic conditions in order to compared the two methodologies

Page generated in 0.0766 seconds