Spelling suggestions: "subject:"cynamic grouping"" "subject:"clynamic grouping""
1 |
Dynamic Grouping Motion and Amodal CompletionUnknown Date (has links)
Objects in a scene are likely to occlude other objects partially and are itself likely
to be partially occluded. A central question, therefore, is how the visual system resolves
the resulting surface correspondence problem by successfully determining which surfaces
belong to which objects. To this end, a recently developed dynamic grouping
methodology has determined whether pairs of adjacent surfaces are grouped (Hock &
Nichols, 2012). The grouping of adjacent surfaces, which depends on their affinity state,
is indicated by the direction of perceived motion across one surface when its luminance is
perturbed. In the current stimuli, which consists of a horizontal surface partially occluded
by a vertical bar, dynamic grouping also can occur for nonadjacent surfaces, providing
they are linked in two-dimensions by a connecting surface. Results indicate that the
dynamic grouping motion is stronger for amodal completion entailing the perceptual
grouping of nonadjacent surfaces behind an occluder. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
2 |
Dynamic Grouping Algorithms For RFID Tag IdentificationLin, Ning-yan 25 July 2010 (has links)
In passive RFID systems, how to reduce the collision among tags is an important issue at the medium access control layer. The Framed Slotted ALOHA and its variations are well-known anti-collision algorithms for RFID systems. However, when the Framed Slotted ALOHA is used, the system efficiency and the average time delay deteriorate rapidly when the total number of tags increases. On the other hand, the total number of slots in a frame can¡¦t be infinity. In this thesis, we first compare existing anti-collision protocols and then propose a novel algorithm based on the Enhanced Dynamic Framed Slotted ALOHA (EDFSA) and the Progressing Scanning (PS) algorithm. The proposed algorithm is called Dynamic Grouping (DG). The DG algorithm partitions the RFID tags according to the distances from tags to the reader in order to avoid using too many slots in a frame. Inparticular, the DG algorithm estimates the spatial distribution of tags based on previous scanning results and then adjusts the partition accordingly. Unlike PS algorithm, the DG algorithm is applicable when the RFID tags are uniformly distributed or normally distributed.
|
3 |
A Framework for Group Modeling in Agent-Based Pedestrian Crowd SimulationsQiu, Fasheng 14 December 2010 (has links)
Pedestrian crowd simulation explores crowd behaviors in virtual environments. It is extensively studied in many areas, such as safety and civil engineering, transportation, social science, entertainment industry and so on. As a common phenomenon in pedestrian crowds, grouping can play important roles in crowd behaviors. To achieve more realistic simulations, it is important to support group modeling in crowd behaviors. Nevertheless, group modeling is still an open and challenging problem. The influence of groups on the dynamics of crowd movement has not been incorporated into most existing crowd models because of the complexity nature of social groups. This research develops a framework for group modeling in agent-based pedestrian crowd simulations. The framework includes multiple layers that support a systematic approach for modeling social groups in pedestrian crowd simulations. These layers include a simulation engine layer that provides efficient simulation engines to simulate the crowd model; a behavior-based agent modeling layers that supports developing agent models using the developed BehaviorSim simulation software; a group modeling layer that provides a well-defined way to model inter-group relationships and intra-group connections among pedestrian agents in a crowd; and finally a context modeling layer that allows users to incorporate various social and psychological models into the study of social groups in pedestrian crowd. Each layer utilizes the layer below it to fulfill its functionality, and together these layers provide an integrated framework for supporting group modeling in pedestrian crowd simulations. To our knowledge this work is the first one to focus on a systematic group modeling approach for pedestrian crowd simulations. This systematic modeling approach allows users to create social group simulation models in a well-defined way for studying the effect of social and psychological factors on crowd’s grouping behavior. To demonstrate the capability of the group modeling framework, we developed an application of dynamic grouping for pedestrian crowd simulations.
|
4 |
Développement d'une stratégie de regroupement dynamique d'actions de maintenance pour un système de production géographiquement dispersé / Development of a dynamic grouping maintenance strategy for a geographically dispersed production systemNguyen, Ho Si Hung 10 September 2019 (has links)
Ces dernières années, un nouveau type de système de production nommé système de production géographiquement dispersé (GDPS) est prôné par de nombreuses entreprises manufacturières internationales. Par cette vision « dispersée », il présente un certain nombre d'avantages tels que l'économie des coûts du produit livré (puisque proche des clients), l'amélioration de la qualité des services (délais de livraison courts, services après-vente de haute qualité) favorisant la pérennité et la compétitivité des entreprises dans un contexte de compétition mondiale. Cependant l’exploitation multi-sites d’un GPDS est confronté à de nombreux défis concernant les normes, les réglementations, la maîtrise des flux de production, et en particulier la planification et l'optimisation de la maintenance en raison de la dispersion géographique des sites de production. Sur ce dernier point et plus globalement la définition d’une stratégie de maintenance adaptée au GDPS, peu d'études ont été menées compte tenu de la jeunesse du sujet et de la complexité des GDPSs (ex. multi-sites, multi-composants). Cette thèse se positionne donc sur ce sujet émergeant avec comme objectif de développer une stratégie de maintenance de regroupement dynamique pour un GDPS en tenant compte de dépendances à la fois aux niveaux composants et sites de production (dépendances économique et géographique) et des impacts des contextes dynamiques (à savoir, taux de détérioration variable des composants, modification des itinéraires de maintenance, possibilités de maintenance, etc.) auxquels il est soumis. Dans cette stratégie, les itinéraires de maintenance et l'ordonnancement sont considérés conjointement dans un modèle global. Le modèle vise à trouver un plan optimal de maintenance et de routage des ressources de maintenance. A cette fin, une structure de coûts et un modèle de dépendance qui prend en compte conjointement la dépendance économique et géographique sont formulés. Ils servent de base à l'élaboration du modèle global de planification et d'ordonnancement de la maintenance et du routage. De plus, pour la recherche de la solution optimale, des algorithmes d’optimisation basés sur l'algorithme génétique et l'algorithme Branch and Bound sont proposés. Enfin, une étude numérique est investiguée pour évaluer la performance, les avantages et aussi les limites de la stratégie proposée. / In the recent years, the Geographically Dispersed Production System (GDPS) with a number of advantages such as saving the product delivered costs (closed to the clients), improving quality of services (short delivery time, high quality after-sales services) has been extensively developed by many manufacturing companies to ensure their competitiveness. In operation, the GPDS faces many challenges concerning standards, regulation, production management, and especially maintenance planning and optimization due to the geographical dispersion of production sites. However, few studies have been developed for maintenance strategies of GDPSs. To face this challenge, the main objective of this thesis is to develop a dynamic grouping maintenance strategy for a GDPS with consideration of dependencies between at both component and site level (economic, geographical dependencies) and impacts of dynamic contexts (i.e. varying deterioration rate of components, change of maintenance routes, maintenance opportunities, etc.). In this strategy, maintenance routing and scheduling are jointly considered in a global model. The model aims at finding an optimal maintenance and routing plan. For this purpose, a cost structure and a dependence model jointly considering economic and geographical dependence are formulated. They are used as a basis for the development of the global model of maintenance routing and scheduling. In addition, to find a joint optimal maintenance and routing plan, advanced algorithms using jointly Genetic Algorithm and Branch and Bound are proposed. Finally, a numerical study is investigated to evaluate the performance and the advantage as well as limits of the proposed maintenance strategy.
|
5 |
Synchronization, Neuronal Excitability, and Information Flow in Networks of Neuronal Oscillators / Synchronisation, Neuronale Erregbarkeit und Informations-Fluss in Netzwerken Neuronaler OszillatorenKirst, Christoph 28 September 2011 (has links)
No description available.
|
Page generated in 0.0684 seconds