• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 630
  • 349
  • 133
  • 73
  • 22
  • 19
  • 17
  • 17
  • 17
  • 17
  • 13
  • 13
  • 10
  • 7
  • 6
  • Tagged with
  • 1558
  • 1054
  • 274
  • 261
  • 249
  • 243
  • 239
  • 193
  • 153
  • 152
  • 152
  • 134
  • 126
  • 125
  • 119
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Análise de simetrias nos grupos do tipo Dm usando conceitos de sistemas dinâmicos. / Dynamical analysis of symmetry groups Dm trough dynamical systems concepts.

Marcio Magini 22 March 1999 (has links)
O entendimento de quebra espontânea de simetria é um problema importante para o estudo de fenômenos na evolução de sistemas abertos, tanto em física quanto em química, como também na biologia. Aqui estudamos um método a mais para este tipo de análise, usando conceitos de sistemas dinâmicos com simetria. O sistema dinâmico escolhido é discreto, isto é, realizado por iteração de um difeomorfismo equivariante sob a ação de um grupo compacto, neste caso um grupo finito do tipo Dm. Especificamente, investigamos o comportamento de atratores caóticos sob a variação dos parâmetros. / The understanding of spontaneous symmetry breaking is an important problem in the study of phenomena in the evolution of open systems, in physics and chemistry as well as in biology. Here we study another method for this kind of analysis, using concepts from dynamical systems with symmetry. The chosen dynamical system is discrete, that is, realized by iteration of an equivariant diffeomorphism under the action of a compact group, in this case one of the finite groups of type Dm. Specifically, we investigate the behavior of chaotic attractors under variation of the parameters.
242

Desacoplamento dinâmico de estados quânticos via campos contínuos de alta frequência / Dynamical decoupling of quantum states by high-frequency continuous fields

Felipe Fernandes Fanchini 19 December 2008 (has links)
Nesta tese de doutoramento nós tivemos como principal objetivo desenvolver novos métodos para proteção da informação e computação quântica. Começamos, de forma introdutória, ilustrando os conceitos básicos e fundamentais da teoria da informação e computação quântica, como os bits quânticos (qubits), o operador densidade, o emaranhamento e as operações lógicas quânticas. Na seqüência, apresentamos os formalismos utilizados para tratar sistemas abertos, ou seja, sujeitos a erros, além das principais técnicas existentes a fim de proteger a informação quântica, como os códigos de correção de erros, os subespaços livres de erros e o desacoplamento dinâmico. Finalmente, baseando-nos na técnica de desacoplamento dinâmico, introduzimos um esquema de proteção para operações lógicas quânticas e o emaranhamentos entre qubits utilizando campos de alta freqüência. Ilustramos em detalhes a proteção da operação lógica quântica de Hadamard e do emaranhamento entre dois qubits, além de apresentarmos as principais diferenças e vantagens de nosso método quando comparado às técnicas tradicionais de desacoplamento dinâmico. / The main objective of this thesis is the development of a new procedure for quantum information and computation protection. We begin by briefly illustrating the basic concepts of quantum information and computation theory, such as quantum bits (qubits), density matrix operator, entanglement, and quantum logical operations. Subsequently, we present the formalism utilized to treat quantum open systems, i.e., systems subjected to errors, and the main strategies to protect quantum information, such as quantum error correction codes, decoherence-free subspaces, and dynamical decoupling. Finally, based on the dynamical decoupling strategies, we introduce a procedure to protect quantum logical operations and entanglement utilizing high-frequency continuous fields. We illustrate, in details, the protection of a Hadamard quantum gate and of entanglement between two qubits, and present the differences and advantages of our procedure when compared with traditional techniques of dynamical decoupling.
243

Rugosidade em Bilhares ClÃssicos / Rugosity in Classical Billiards

JoÃo Paulo da Costa Nogueira 02 August 2016 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Um bilhar consiste basicamente de uma partÃcula confinada em uma regiÃo do espaÃo. Trataremos apenas de bilhares em duas dimensÃes na ausÃncia de campos externos e desprezaremos qualquer tipo de forÃas dissipativas, de modo que as colisÃes da partÃcula com as fronteiras do bilhar sÃo elÃsticas. AlÃm disso, as fronteiras sÃo fixas, ou seja, respeitam uma equaÃÃo do tipo $R = R(r, heta)$, onde r e $ heta$ sÃo as coordenadas polares planas. O bilhar à um modelo interessante por vÃrios motivos. Primeiro, à um sistema muito simples (tem poucos graus de liberdade) e de fÃcil visualizaÃÃo. No entanto, possui uma dinÃmica nÃo-trivial com grande riqueza de comportamentos (podendo apresentar comportamento regular, caÃtico ou atà mesmo misto, caso em que coexistem no espaÃo de fase de um Ãnico bilhar regiÃes caÃticas e regulares). Segundo, o tratamento numÃrico desses sistemas nÃo requer integraÃÃo numÃrica de equaÃÃes diferenciais e, portanto, nÃo consume muito tempo de execuÃÃo. AlÃm disso, os bilhares permitem que realizemos investigaÃÃes de carÃter fundamental, por exemplo, podemos estudar como sistemas regulares reagem ao serem levemente perturbados. Especificamente, iremos aplicar uma rugosidade na fronteira do bilhar circular e elÃptico e observar como o espaÃo de fase irà mudar ao sofrer tal perturbaÃÃo. / In this work we are going to study a physical system known as billiard. A billiard is defined to be basically a confined particle in a closed region of the space. We are going to deal with only two-dimensionals billiards in the absence of extern fields and to neglect any kind of dissipative forces, in a way that the colisions of the particle with the boundary are elastics. Beyond that, the boundary are fixed, it means they respect an equation of kind $R(r, heta)$, where $r$ and $ heta$ are the polar coordinates on a plan. A billiard is a very interesting model by several reasons. First, it is a simple system (it has a few degree of freedom) and it is of easy visualization. However, it has a non-trivial dynamics with a big richness of behaviors (from a billiard it could appear regular behavior, chaotic behavior, or even a mixed behavior, where coexist in the phase space of one billiard chaotics and regular regions). Second, the numerical approach of these systems does not require numerical integration of diferential equations and, therefore, does not take too much time of execution. Furthermore, the billiards allow us to perform investigations of fundamental nature, for example, we can study how regular systems react by being slightly disturbed. Especificaly, we perform a rugosity perturbation on the billiard surface and observe how the phase space is going to change.
244

Medidas que maximizam a entropia no Deslocamento de Haydn

Figueiredo, Fernanda Ronssani de January 2015 (has links)
Neste trabalho é abordado o exemplo proposto por Nicolai Haydn, no qual é dado um exemplo de um deslocamento onde é possível construir in nitas medidas de máxima entropia, além de in nitos estados de equilíbrio. / In this work, we present the example shown by Nicolai Haydn, which is given by subshift where is possible to show in nity measures of maximal entropy, besides in nitely many distinct equilibrium states.
245

Perturbações de sistemas reversiveis / Perturbations of reversible systems

Mereu, Ana Cristina de Oliveira 13 August 2018 (has links)
Orientador: Marco Antonio Teixeira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T09:38:10Z (GMT). No. of bitstreams: 1 Mereu_AnaCristinadeOliveira_D.pdf: 1463250 bytes, checksum: 9bbe3e5b625f68effb7acc05409359ea (MD5) Previous issue date: 2009 / Resumo: Este trabalho é voltado ao estudo de existência e persistência de órbitas periódicas e órbitas homoclínicas em perturbações de sistemas dinamicos reversíveis. Primeiramente, rompemos a reversibilidade de centros no plano e em dimensões superiores e detectamos condições para a existência de ciclos limites e toros invariantes. A seguir, estudamos a existência de soluções periódicas simétricas de perturbações de uma família de equações diferencias reversíveis. A existência e persistência de órbitas homoclínicas em tais equações também foram discutidas. / Abstract: In this work we study the existence and persistence of some minimal sets in perturbations of reversible systems. First we make non reversible perturbations of centers in R2 and R4 and we detect conditions for the existence of limit cycles and invariant tori. We study the existence of periodic solutions of the perturbations of a family of di_erential equations expressed by x(2n) + a (2n-2)/2 +¿+ a1x(2) + x = 0 ; for n = 2; 3. The existence and persistence of homoclinic orbits in such equations are also discussed. / Doutorado / Geometria e Topologia / Doutor em Matemática
246

O papel da histerese no comportamento  complexo da condutância estomática / The role of hysteresis in the complex behavior of the stomatal conductance

Antônio Mário de Torres Ramos 21 February 2013 (has links)
Estômatos são poros responsáveis pela troca gasosa entre a folha e o meio externo. A partir da década de 80, experimentos revelaram um complexo padrão espaço temporal na abertura e fechamento dos estômatos. As experiências apontam para uma possível coordenação entre estômatos em algumas áreas da folha chamada de patches. Esse fenômeno é conhecido na literatura como patchy stomatal conductance. Frequentemente a coordenação dinâmica dos estômatos está associada à oscilações temporais na condutãncia estomática (média especial da abertura dos estômatos). Em 1997 Haefner, Buckley e Mott (HBM) publicaram uma análise numérica de um modelo dinâmico para explorar o comportamento complexo dos estômatos. O modelo é baseado em algumas características conhecidas dos estômatos e assume transporte hídrico em uma rede definida por uma geometria simples e bastante restritiva. De acordo com os autores, o modelo reproduz qualitativamente os dados experimentais. Recentemente, Ferraz e Prado mostraram que esse modelo não é capaz de reproduzir os resultados experimentais. Usando ingredientes do modelo sugerido por HBM, Ferraz e Prado sugeriram uma geometria realística de distribuição reservatórios hídricos. Embora essa configuração reproduza os patches, eles permanecem estáticos e nenhuma oscilação é observada. Sem explorar detalhes significativos, Ferraz e Prado afirmaram que a histerese na abertura estomatal poderia explicar vários aspectos dos resultados experimentais. No presente estudo comprovamos, através de uma abordagem computacional baseada em transdutores histeréticos, que a hipótese de histerese na abertura dos estômatos de fato reproduz qualitativamente os dados experimentais. Em nossa abordagem a histerese na abertura dos estômatos é emulada através de operadores chamados de histerons. A robustez da hipótese é testada usando diferentes tipos de histerons. Analisamos a correlação entre os estômatos na rede que simula a superfície da folha. Observamos que a correlação entre estômatos depende da geometria da veia. Uma análise detalhada dos parâmetros envolvidos revela uma dependência entre o período de oscilação na condutância estomática e o déficit de vapor d\'água entre a folha e o meio ambiente. Esta característica subjacente ao modelo pode inspirar novas experiências para testar a hipótese da histerese na abertura dos estômatos. / Stomata are pores on the surface of leaves responsible for controlling the exchange of gas between the plant and the environment. Experiments revealed a complex spatial-temporal pattern in the opening and closing mechanism of stomata. The main feature of the phenomenon is that stomata appear to be synchronized into clusters, known as patches. The dynamical coordination of stomata often involves oscillations in stomatal conductance. In 1997 Haefner, Buckley, and Mott (HBM) published a numerical analysis of a dynamic model to explore the complex behavior of stomata. The model is based on some known features of the stomata, and assumes that water diffuses within the leaves according to a simple geometric arrangement. According to the authors, the model reproduces qualitatively the experimental data. Recently, Ferraz and Prado showed that the computational approach of HBM is not able to reproduce the experimental results. Inspired by this model, Ferraz and Prado introduced a new geometric features that leads to static patches of stomata; however no oscillation was observed and the patches remained static. The authors suggested that hysteresis in stomatal aperture could explain several experimental aspects. We now report a further investigation of the changes suggested by Ferraz and Prado in the original model of HBM. The theoretical approach confirmed that hysteresis in the aperture mechanism of pores reproduces a variety of behaviors of stomatal conductance described in experiments. We explore the hysteresis feature through the formalism of hysteretic transducer. The robustness of the hysteretic assumption is tested by different kinds of hysteresis operators. We analyzed the correlation among stomata in the lattice. We observed that the correlation depends on the geometry of the veins. Finally, the analysis of the model reveals a dependence between the period of oscillation in the stomatal conductance time series and water vapor pressure deficits Δω - an external parameter. Further experiments might explore this underlying feature of the model.
247

Certain results on the Möbius disjointness conjecture

Karagulyan, Davit January 2017 (has links)
We study certain aspects of the Möbius randomness principle and more specifically the Möbius disjointness conjecture of P. Sarnak. In paper A we establish this conjecture for all orientation preserving circle homeomorphisms and continuous interval maps of zero entropy. In paper B we show, that for all subshifts of finite type with positive topological entropy the Möbius disjointness does not hold. In paper C we study a class of three-interval exchange maps arising from a paper of Bourgain and estimate its Hausdorff dimension. In paper D we consider the Chowla and Sarnak conjectures and the Riemann hypothesis for abstract sequences and study their relationship. / <p>QC 20171016</p>
248

Study of Dissipative Spots In Three-Component Reaction-Difussion Systems on Two-Dimensional Domains

Belzil-Lacasse, Christian January 2016 (has links)
Dissipative spots are found in physical experiments of many branches of natural science. In this thesis we use three-component reaction-diffusion systems on two-dimensional domains in order to generate these patterns. Using a dynamical system approach we proceed with a Fourier analysis on a linearized reaction-diffusion system in order to provide the bifurcation conditions for a given homogeneous state. We validate our results and establish it's limitations through numerical experiments. We report very interesting behavior during these simulations, notably hysteresis and multi-stability. We will then turn our attention to the relatively unexplored phenomenon of rotating spots. Based on previous work done for spiral waves, we investigate the effect of translational symmetry-breaking on a rotating spot mainly through careful numerical analysis.
249

Border collision bifurcations in piecewise smooth systems

Wong, Chi Hong January 2011 (has links)
Piecewise smooth maps appear as models of various physical, economical and other systems. In such maps bifurcations can occur when a fixed point or periodic orbit crosses or collides with the border between two regions of smooth behaviour as a system parameter is varied. These bifurcations have little analogue in standard bifurcation theory for smooth maps and are often more complex. They are now known as "border collision bifurcations". The classification of border collision bifurcations is only available for one-dimensional maps. For two and higher dimensional piecewise smooth maps the study of border collision bifurcations is far from complete. In this thesis we investigate some of the bifurcation phenomena in two-dimensional continuous piecewise smooth discrete-time systems. There are a lot of studies and observations already done for piecewise smooth maps where the determinant of the Jacobian of the system has modulus less than 1, but relatively few consider models which allow area expansions. We show that the dynamics of systems with determinant greater than 1 is not necessarily trivial. Although instability of the systems often gives less useful numerical results, we show that snap-back repellers can exist in such unstable systems for appropriate parameter values, which makes it possible to predict the existence of chaotic solutions. This chaos is unstable because of the area expansion near the repeller, but it is in fact possible that this chaos can be part of a strange attractor. We use the idea of Markov partitions and a generalization of the affine locally eventually onto property to show that chaotic attractors can exist and are fully two-dimensional regions, rather than the usual fractal attractors with dimension less than two. We also study some of the local and global bifurcations of these attracting sets and attractors.Some observations are made, and we show that these sets are destroyed in boundary crises and some conditions are given.Finally we give an application to a coupled map system.
250

Topics in dynamical systems

Hook, James Louis January 2012 (has links)
In this thesis I explore three new topics in Dynamical Systems. In Chapters 2 and 3 I investigate the dynamics of a family of asynchronous linear systems. These systems are of interest as models for asynchronous processes in economics and computer science and as novel ways to solve linear equations. I find a tight sandwich of bounds relating the Lyapunov exponents of these asynchronous systems to the eigenvalue of their synchronous counterparts. Using ideas from the theory of IFSs I show how the random behavior of these systems can be quickly sampled and go some way to characterizing the associated probability measures. In Chapter 4 I consider another family of random linear dynamical system but this time over the Max-plus semi-ring. These models provide a linear way to model essentially non-linear queueing systems. I show how the topology of the queue network impacts on the dynamics, in particular I relate an eigenvalue of the adjacency matrix to the throughput of the queue. In Chapter 5 I consider non-smooth systems which can be used to model a wide variety of physical systems in engineering as well as systems in control and computer science. I introduce the Moving Average Transformation which allows us to systematically 'smooth' these systems enabling us to apply standard techniques that rely on some smoothness, for example computing Lyapunov exponents from time series data.

Page generated in 0.0564 seconds