• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • Tagged with
  • 158
  • 158
  • 157
  • 87
  • 56
  • 42
  • 40
  • 39
  • 36
  • 34
  • 34
  • 33
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Nanosatellite Launch Data-Logger (Sync)

Gerdom, Christopher Martin 01 December 2018 (has links) (PDF)
CubeSat designers are increasingly looking to incorporate delicate structures and optics into their payloads. These delicate payloads, however, may not survive the required absolute-worst-case launch vibration testing needed for flight certification. To help address this problem, and to better match testing conditions to real-world launch environments, this thesis introduces Sync, a compact 1/4U CubeSat payload designed to collect data on the vibrations and thermal environments CubeSats experience inside a deployer on the way to orbit. This data can be used to better understand the launch environment for different vehicles, and help develop new, more realistic testing guidelines that could enable more delicate payloads to be launched.
72

Trajectory-Tracking Control of the Ball-and-Plate System

Riccoboni, Dominic E 01 March 2023 (has links) (PDF)
The Mechatronics group in the Mechanical Engineering department of Cal Poly is interested in creating a demonstration of a ball-and-plate trajectory tracking controller on hardware. The display piece will serve to inspire engineering students to pursue Mechatronics and control theory as an area of study. The ball-and-plate system is open-loop unstable, underactuated, and has complicated, nonlinear equations of motion. These features present substantial challenges for control - especially if the objective is trajectory tracking. Because the system is underactuated, common nonlinear trajectory tracking control techniques are ineffective. This thesis lays out a theoretical foundation for controlling the hardware. Several important concepts related to ball-and-plate trajectory tracking control are presented. Models of the system, with various assumptions, are given and used in deriving control law candidates. To limit project scope, reasonable control criteria are introduced and used to evaluate designs from the thesis. Several control architectures are explored, these being Full-State Feedback with Integral Action, Single-Input-Single-Output Sliding Mode, and Full-State Feedback with Feed Forward. The mathematical reasoning behind each is detailed, simulation results are shown to validate their practicality and demonstrate features of the architectures, and trajectory similarity measure studies are produced to evaluate controller performance for a wide range of setpoint functions. The Full-State Feedback with Feed Forward controller is recommended based on its theoretical advantages and compliance with the control criteria over the competing designs. The control architecture has a proof of asymptotic tracking in the linear model, has excellent performance in simulations that use a nonlinear plant model, and produces the most pleasing visual experience when viewed in animation.
73

An Advanced Controller for a Semi-active Wheelchair Suspension

Smith, David J 01 January 2011 (has links) (PDF)
An Advanced Controller for a Semi-Active Wheelchair Suspension was designed, built and tested. The suspension consisted of a Goodyear 1S3-011 air spring, IQ Valves high speed proportional solenoid valve, and a custom made accumulator. Several controller designs specific to semi-active suspensions were designed and tested. The controllers investigated were skyhook, acceleration driven damping, and a combined control law employing both a dual and single sensor version. The implementation of skyhook control suffered performance degradation from the idealization due to particular elements of hardware, however acceleration driven damping showed a marked and statistically significant improvement over skyhook control, in hardware, by 14%. The combined control laws exhibited as yet unexplained transient behavior that produced results with low confidence in their veracity. All controllers proposed performed better than a conventional oil damper and spring type suspension.
74

Nonlinear Model Development and Validation for Ball and Plate Control System

Richter, Zachary 01 August 2021 (has links) (PDF)
Ball and plate balancing control systems are commonly studied due to the complex dynamics associated with the instability of the system in open-loop. For simplicity, mathematical models describing the ball and plate dynamics are often linearized and the effects of complex motion are assumed to be negligible. These assumptions are rarely backed with evidence or explanations validating the simplified form of the dynamical equations of motion. This thesis focuses on developing a nonlinear model that more accurately defines the dynamics of the system, in order to quantify the error of linear and nonlinear models when compared to a Simscape physical system model. To develop the nonlinear model, this thesis considers both Newton-Euler and Lagrangian modeling methods and applies the method best suited for the ball and plate system. A linear state-feedback controller is developed to compare the stable responses of each system model. The response of each plant model in open-loop and closed-loop configurations subject to different inputs, initial conditions, and disturbances are simulated in the Simulink environment. When compared to the physical system, there was less error from the nonlinear model than from the linear model for both initial condition and disturbance responses. The differences in error were as high as 2% compared to 10% for the nonlinear and linear models, respectively. These results show that there are significant differences associated with model simplification. To optimize the performance, it may be advantageous to utilize a nonlinear model, however, the linearized model is still valid to be used in certain applications due to its stable response behavior.
75

Vibration Health Monitoring of Gears

Scherer, Markus Josef 01 June 2012 (has links) (PDF)
Monitoring the health of vibrating gears is important to ensure proper operation especially in potentially life-threatening structures, such as helicopters, nuclear power plants, and uninterruptible power supply transitions in hospitals. The most common monitoring technique is casing mounted accelerometers to measure vibration. In contrast, during the last few years acoustic monitoring techniques have also provided a few diagnostic methods for gear failure. Current diagnostic methods to indicate improper gear behavior use either existing vibration data, recorded from defective gear systems, or modern dynamic models predicting gear failure behavior. This thesis uses dynamic models to indicate, predict, and diagnose healthy and unhealthy gear systems. Influence of Tip Relief on contact forces are introduced for a decent understanding of gear dynamics followed by evaluation of common gear failure mechanisms. Two software systems were used to model gear failure: Adams®, a vibration based software that uses a rigid-elastic model for multi-body dynamics, and LSDYNA ®, a transient dynamic finite element solver, capable of solving acoustic problems with the boundary element method. Results describe tooth loads along the line of contact with respect to different Tip Reliefs and contact ratios. Gear failure is examined using a Fast Fourier Transformation to characterize patterns that can be used to diagnose unhealthy gear systems. Agreement of experimental results validates theoretical predictions of analytical and numerical solutions of gear failure especially of tooth breakage.
76

Analysis and Mitigation of the CubeSat Dynamic Environment

Furger, Steve M 01 May 2013 (has links) (PDF)
A vibration model was developed for CubeSats inside the Poly-Picosatellite Orbital Deployer (P-POD). CubeSats are fixed in the Z axis of deployers, and therefore resonate with deployer peaks. CubeSats generally start fixed in the X and Y axes, and then settle into an isolated position. CubeSats do not resonate with deployers after settling into an isolated position. Experimental data shows that the P-POD amplifies vibration loads when CubeSats are fixed in the deployer, and vibration loads are reduced when the CubeSats settle into an isolated position. A concept for a future deployer was proposed that isolates CubeSats from the deployer at the rail interface using viscoelastic foam sandwiched in the deployer rails. By creating an isolator frequency far below the deployer resonant frequency, CubeSats loads are not amplified at the deployer’s resonant peak. Feasibility tests show that CubeSat vibration loads can be reduced to 50% of the vibration input in certain cases. Testing also shows that it is much easier to define vibration loads for isolated CubeSats than CubeSats in the current P-POD.
77

Control of a Spacecraft Using Mixed Momentum Exchange Devices

Currie, Blake J 01 October 2014 (has links) (PDF)
Hardware configurations, a control law, and a steering law are developed for a mixed hardware spacecraft that uses both control moment gyros and reaction wheels. Replacing one or more gyros in a spacecraft with a reaction wheel has potential for cost savings while still achieving much greater performance than using reaction wheels alone. Several simulated tests are run to compare the performance to a traditional all reaction wheel or all control moment gyro spacecraft, including analysis of failure modes and singular configurations. The mixed system performed similarly to all gyro systems, responding within 6% of the gyro system’s time for all nominal cases. It far exceeds the performance of reaction wheel systems, taking only a fourth of the time. It also handles failures better than reduced size gyro systems. As such, it can be an effective cost saving measure for certain satellite missions.
78

A Quantitative Approach for Tuning a Mountain Bike Suspension

Waal, Steven Robert 01 November 2020 (has links) (PDF)
A method for tuning the spring rate and damping rate of a mountain bike suspension based on a data-driven procedure is presented. The design and development of a custom data acquisition system, known as the "MTB DAQ," capable of measuring acceleration data at the front and rear axles of a bike are discussed. These data are input into a model that is used to calculate the vertical acceleration and pitching angular acceleration response of the bike and rider. All geometric and dynamic properties of the bike and rider system are measured and built into the model. The model is tested and validated using image processing techniques. A genetic algorithm is implemented with the model and used to calculate the best spring rate and damping rate of the mountain bike suspension such that the vertical and pitching accelerations of the bike and rider are minimized for a given trail. Testing is done on a variety of different courses and the performance of the bike when tuned to the results of the genetic algorithm is discussed. While more fine tuning of the model is possible, the results show that the genetic algorithm and model accurately predict the best suspension settings for each course necessary to minimize the vertical and pitching accelerations of the bike and rider.
79

An Investigation of Damage Arrestment Devices on Carbon Fiber Sandwich Specimens Under Dynamic Loading

Sanchez, Gabriel Sabino 01 June 2012 (has links) (PDF)
This research studies the effects of a damage arrestment device embedded between a carbon fiber facesheet and foam core to find whether there is an increase in the structural integrity of the sandwich composites. Experimental and theoretical finite element analyses are implemented for two different composite sandwich geometries; plates and beams. Each structure consisted of the same loading criteria and was restricted to the same vibration fixture during the experiment. An accelerometer was placed on the composite plate to record the amplitude and the natural frequencies of the composite structure. Each composite specimen is then fixed to the surface of the Cal Poly Shake Table by two aluminum block fixtures. The mechanical properties of LTM45/CF1803 pre-impregnated carbon fiber and Last-A-foam FR 6710 polyvinylchloride foam were experimentally analyzed using ASTM D3039 and ASTM D1621 standards respectively to determine the material’s mechanical properties. By using the finite element program COSMOS with the pre-software GeoStar, accuracy representation were created to compare numerical, analytical, and theoretical results.
80

Development Of Mirror Flexures For Use In The Muvi Instrument

Harrop, Colin W 01 April 2023 (has links) (PDF)
The Miniaturized Ultraviolet Imager (MUVI), is a compact wide field UV imaging instrument in development at UC Berkeley Space Sciences Laboratory and Cal Poly, San Luis Obispo. MUVI is designed to fit in a 2U CubeSat form factor and provide wide field, high resolution images of the ionosphere at far ultraviolet wavelengths. This thesis details the design and analyses of MUVI’s deployable cover mirror mounting flexures. Three different flexure geometries were evaluated, an optimal candidate was determined based on a number of criteria including isolation of vibration and stress to the mirrors, manufacturability and cost. The design of the flexure system includes the flexure blades themselves, Invar pads bonded to the mirror to mitigate the difference in CTEs of the different material, mounting of flexure blades to the deployable cover and ground support equipment for assembly and testing. During the design of the flexures, various materials were studied, and Titanium was concluded as the optimum material due to its combination of high strength and flexibility compared to stainless steel, aluminum and other metals. Utilizing titanium, several flexure designs were proposed, and three candidates were selected to be manufactured and tested. Throughout the design phase, all flexures went through several rounds of analysis utilizing finite element analysis to simulate quasi-static loads, modal analysis of the systems natural frequency as well as random vibration simulations to simulate testing environments. Once the front-runner designs were selected and manufactured, several tests were conducted. Testing included adhesive bond coupon testing of the adhesive in tension and bending to experimentally validate the bonding size of the invar pads would be sufficient. The adhesive bond testing conducted tension and three-point bend tests to characterize the epoxy adhesive used in the flexure assembly. Testing also consisted of sine sweep and random vibration environment in accordance with the NASA General Environmental Verification Standard to qualify the hardware for spaceflight. Throughout the vibration testing, an autocollimator was used pre and post-test to measure shifts in the optical alignment of the mirror after it underwent vibration qualification testing. Experimental and analytical models were compared once all testing was completed. The Curved Blade showed to test in the real world very close to that predicted by the finite element model, however, the Bent Blade and Z Blade showed a larger difference between analysis and test. Discussion into the reasoning for this difference and lessons learned is included.

Page generated in 0.0988 seconds