• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Object Removal for Point Cloud Map Creation in Autonomous Driving : Enhancing Map Accuracy via Two-Stage Offline Model / Dynamisk objekt borttagning för skapande av kartor över punktmoln vid autonom körning : Förbättrad kartnoggrannhet via tvåstegs offline-modell

Zhou, Weikai January 2023 (has links)
Autonomous driving is an emerging area that has been receiving an increasing amount of interest from different companies and researchers. 3D point cloud map is a significant foundation of autonomous driving as it provides essential information for localization and environment perception. However, when trying to gather road information for map creation, the presence of dynamic objects like vehicles, pedestrians, and cyclists will add noise and unnecessary information to the final map. In order to solve the problem, this thesis presents a novel two-stage model that contains a scan-to-scan removal stage and a scan-to-map generation stage. By designing the new three-branch neural network and new attention-based fusion block, the scan-to-scan part achieves a higher mean Intersection-over-Union (mIoU) score. By improving the ground plane estimation, the scan-to-map part can preserve more static points while removing a large number of dynamic points. The test on SemanticKITTI dataset and Scania dataset shows our two-stage model outperforms other baselines. / Autonom körning är ett nytt område som har fått ett allt större intresse från olika företag och forskare. Kartor med 3D-punktmoln är en viktig grund för autonom körning eftersom de ger viktig information för lokalisering och miljöuppfattning. När man försöker samla in väginformation för kartframställning kommer dock närvaron av dynamiska objekt som fordon, fotgängare och cyklister att lägga till brus och onödig information till den slutliga kartan. För att lösa problemet presenteras i den här avhandlingen en ny tvåstegsmodell som innehåller ett steg för borttagning av skanningar och ett steg för generering av skanningar och kartor. Genom att utforma det nya neurala nätverket med tre grenar och det nya uppmärksamhetsbaserade fusionsblocket uppnår scan-to-scan-delen högre mean Intersection-over-Union (mIoU)-poäng. Genom att förbättra uppskattningen av markplanet kan skanning-till-kartor-delen bevara fler statiska punkter samtidigt som ett stort antal dynamiska punkter avlägsnas. Testet av SemanticKITTI-dataset och Scania-dataset visar att vår tvåstegsmodell överträffar andra baslinjer.
2

Analyzing different approaches to Visual SLAM in dynamic environments : A comparative study with focus on strengths and weaknesses / Analys av olika metoder för Visual SLAM i dynamisk miljö : En jämförande studie med fokus på styrkor och svagheter

Ólafsdóttir, Kristín Sól January 2023 (has links)
Simultaneous Localization and Mapping (SLAM) is the crucial ability for many autonomous systems to operate in unknown environments. In recent years SLAM development has focused on achieving robustness regarding the challenges the field still faces e.g. dynamic environments. During this thesis work different existing approaches to tackle dynamics with Visual SLAM systems were analyzed by surveying the recent literature within the field. The goal was to define the advantages and drawbacks of the approaches to provide further insight into the field of dynamic SLAM. Furthermore, two methods of different approaches were chosen for experiments and their implementation was documented. Key conclusions from the literature survey and experiments are the following. The exclusion of dynamic objects with regard to camera pose estimation presents promising results. Tracking of dynamic objects provides valuable information when combining SLAM with other tasks e.g. path planning. Moreover, dynamic reconstruction with SLAM offers better scene understanding and analysis of objects’ behavior within an environment. Many solutions rely on pre-processing and heavy hardware requirements due to the nature of the object detection methods. Methods of motion confirmation of objects lack consideration of camera movement, resulting in static objects being excluded from feature extraction. Considerations for future work within the field include accounting for camera movement for motion confirmation and producing available benchmarks that offer evaluation of the SLAM result as well as the dynamic object detection i.e. ground truth for both camera and objects within the scene. / Simultaneous Localization and Mapping (SLAM) är för många autonoma system avgörande för deras förmåga att kunna verka i tidigare outforskade miljöer. Under de senaste åren har SLAM-utvecklingen fokuserat på att uppnå robusthet när det gäller de utmaningar som fältet fortfarande står inför, t.ex. dynamiska miljöer. I detta examensarbete analyserades befintliga metoder för att hantera dynamik med visuella SLAM-system genom att kartlägga den senaste litteraturen inom området. Målet var att definiera för- och nackdelar hos de olika tillvägagångssätten för att bidra med insikter till området dynamisk SLAM. Dessutom valdes två metoder från olika tillvägagångssätt ut för experiment och deras implementering dokumenterades. De viktigaste slutsatserna från litteraturstudien och experimenten är följande. Uteslutningen av dynamiska objekt vid uppskattning av kamerans position ger lovande resultat. Spårning av dynamiska objekt ger värdefull information när SLAM kombineras med andra uppgifter, t.ex. path planning. Dessutom ger dynamisk rekonstruktion med SLAM bättre förståelse om omgivningen och analys av objekts beteende i den kringliggande miljön. Många lösningar är beroende av förbehandling samt ställer höga hårdvarumässiga krav till följd av objektdetekteringsmetodernas natur. Metoder för rörelsebekräftelse av objekt tar inte hänsyn till kamerarörelser, vilket leder till att statiska objekt utesluts från funktionsextraktion. Uppmaningar för framtida studier inom området inkluderar att ta hänsyn till kamerarörelser under rörelsebekräftelse samt att ta ändamålsenliga riktmärken för att möjliggöra tydligare utvärdering av SLAM-resultat såväl som för dynamisk objektdetektion, dvs. referensvärden för både kamerans position såväl som för objekt i scenen.
3

Towards Visual-Inertial SLAM for Dynamic Environments Using Instance Segmentation and Dense Optical Flow

Sarmiento Gonzalez, Luis Alejandro January 2021 (has links)
Dynamic environments pose an open problem for the performance of visual SLAM systems in real-life scenarios. Such environments involve dynamic objects that can cause pose estimation errors. Recently, Deep Learning semantic segmentation networks have been employed to identify potentially moving objects in visual SLAM; however, semantic information is subject to misclassifications and does not yield motion information alone. The thesis presents a hybrid method that employs semantic information and dense optical flow to determine moving objects through a motion likelihood. The proposed approach builds over stereo- inertial ORBSLAM 3, adding the capability of dynamic object detection to allow a more robust performance in dynamic scenarios. The system is evaluated in the OpenLORIS dataset, which considers stereo-inertial information in challenging scenes. The impact of dynamic objects on the system’s performance is studied through the use of ATE, RPE and Correctness Rate metrics. A comparison is made between the original ORBSLAM 3, ORBSLAM 3 considering only semantic information and the hybrid approach. The comparison helps identify the benefits and limitations of the proposed method. Results suggest an improvement in ATE for the hybrid approach with respect to the original ORBSLAM 3 in dynamic scenes. / Dynamiska miljöer utgör ett öppet problem för prestanda för visuella SLAM-system i verkliga scenarier. Sådana miljöer involverar dynamiska objekt som kan orsaka uppskattningsfel vid positionering. Nyligen har djupinlärning med semantiska segmenteringsnätverk använts för att identifiera potentiellt rörliga objekt i visuellt SLAM; emellertid är semantisk information föremål för felklassificeringar och ger inte enskilt rörelseinformation. Avhandlingen presenterar en hybridmetod som använder semantisk information och tätt optiskt flöde för att bestämma rörliga föremål genom en rörlig sannolikhet. Det föreslagna tillvägagångssättet bygger på stereotröghet ORBSLAM 3 och lägger till möjligheten för dynamisk objektdetektering för att möjliggöra en mer robust prestanda i dynamiska scenarier. Systemet utvärderas i OpenLORIS dataset, som tar hänsyn till stereo-inertial information i utmanande scener. Dynamiska objekts inverkan på systemets prestanda studeras med hjälp av medelvärdet av translationsfelet (ATE), relativa positioneringsfelet (RPE) och korrekthetsfördelning (Correctness Rate). En jämförelse görs mellan den ursprungliga ORBSLAM 3, ORBSLAM 3 med endast semantisk information, samt hybridmetoden. Jämförelsen hjälper till att identifiera fördelarna och begränsningarna med den föreslagna metoden. Resultaten tyder på en förbättring av ATE för hybridmetoden i jämförelse med den ursprungliga ORBSLAM 3 i dynamiska scener.

Page generated in 0.0513 seconds