• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 18
  • 12
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 1
  • 1
  • Tagged with
  • 95
  • 41
  • 41
  • 37
  • 22
  • 17
  • 16
  • 14
  • 14
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Genotype-Phenotype Association Analysis of Dilated Cardiomyopathy in Becker Muscular Dystrophy

Kaspar, Rita Wen 26 August 2009 (has links)
No description available.
42

Chronic Dietary Supplementation of Branched-Chain Amino Acids Does Not Attenuate Muscle Torque Loss in a Mouse Model of Duchenne Muscular Dystrophy

Sperringer, Justin Edward 12 September 2019 (has links)
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive, progressive muscle-wasting disease characterized by mutations in the dystrophin gene. Duchenne muscular dystrophy is the most common and most severe form of inherited muscle diseases, with an incidence of 1 in 3,500 male births1,2. Mutations in the dystrophin gene result in non-functional dystrophin or the complete absence of the protein dystrophin, resulting in necrosis and fibrosis in the muscle, loss of ambulation, cardiomyopathies, inadequate or failure of respiratory function, and decreased lifespan. Although there has been little research for effective nutritional strategies, dietary intervention may be effective as an adjuvant treatment. In this study, wild type (WT) and mdx animals were provided either a control or elevated branched chain amino acid (BCAA) diet nocturnally for 25 weeks to determine if the elevated BCAAs would attenuate muscle torque loss. Twenty-five weeks of chronic, elevated BCAA supplementation had no impact on muscle function measures. Interestingly, mdx and WT animals had the same torque responses in the low stimulation frequencies (1 Hz – 30 Hz) compared to higher stimulation frequencies. Tetanus was reached at a much lower stimulation frequency in mdx animals compared to WT animals (100 Hz vs +150 Hz). The mdx mouse consistently had more cage activity in the light cycle X- and Y-planes. Interestingly, animals on the BCAA diet increased X-, Y-, and Z-plane activity in the dark cycles at four weeks while animals on the control diet more Z-plane activity at 25 weeks, although not significant. All three BCAAs were elevated in the plasma at 25 weeks, although only Leu was significantly elevated. The BCAAs had no effect on. The diaphragm and skeletal muscle masses were larger in mdx animals, and WT animals had a significantly larger epididymal fat pad. The active state of BCKDC determined by phosphorylation of the E1α enzyme was greater in WT animals in white skeletal muscle, but not red skeletal muscle. Protein synthesis effectors of the mTORC1 signaling pathway and autophagy markers were similar among groups. Wild type animals had increased mTORC1 effectors and animals on the BCAA diet had decreased autophagy markers, although not significant. Although BCAAs did not affect muscle function, fibrosis, or protein synthesis effectors, this study illustrates the functionality of mdx muscles over time. It would be interesting to see how the different muscle fiber types are affected by DMD, noting the differences between the diaphragm, heart, red muscle, and white muscle fibrosis markers. Although there was no increase in mTORC1 effectors with an elevated BCAA diet, it would be interesting to determine muscle protein synthesis, myofibrillar protein synthesis, and total protein turnover in the mdx mouse with an elevated BCAA diet, although the dietary intervention started when mice arrived at 4 weeks of age, earlier intervention may be beneficial early in the disease process. / Doctor of Philosophy / Duchenne Muscular Dystrophy (DMD) is an X-linked recessive, progressive muscle-wasting disease characterized by mutations in the dystrophin gene. Duchenne muscular dystrophy is the most common and most severe form of inherited muscle diseases, with an incidence of 1 in 3,500 male births1,2. Mutations in the dystrophin gene result in non-functional dystrophin or the complete absence of the protein dystrophin, resulting in necrosis and fibrosis in the muscle, loss of movement and walking ability, cardiomyopathies, inadequate or failure of respiratory function, and decreased lifespan. Although there has been little research for effective nutritional strategies, dietary intervention may be effective as an adjuvant treatment and palliative care. The branched chain amino acids (BCAAs) are known to directly stimulate muscle protein synthesis by direct activation of the mechanistic target of rapamycin complex 1 (mTORC1). This study aimed to illustrate the differences between diseased and healthy mice and determine if BCAAs can reduce muscle torque loss. Twenty-five weeks of chronic, elevated BCAA supplementation had no impact on muscle function measures. Interestingly, mdx and WT animals had the same torque responses in the low stimulation frequencies (1 Hz – 30 Hz) compared to higher stimulation frequencies. Tetanus was reached at a much lower stimulation frequency in mdx animals compared to WT animals (100 Hz vs +150 Hz). The mdx mouse consistently had more cage activity in the light cycle X- and Y-planes. Interestingly, animals on the BCAA diet increased X-, Y-, and Z-plane activity in the dark cycles at four weeks while animals on the control diet more Z-plane activity at 25 weeks, although not significant. All three BCAAs were elevated in the plasma at 25 weeks, although only Leu was significantly elevated. The BCAAs had no effect on. The diaphragm and skeletal muscle masses were larger in mdx animals, and WT animals had a significantly larger epididymal fat pad. The active state of BCKDC determined by phosphorylation of the E1α enzyme was greater in WT animals in white skeletal muscle, but not red skeletal muscle. Protein synthesis effectors of the mTORC1 signaling pathway and autophagy markers were similar among groups. Wild type animals had increased mTORC1 effectors and animals on the BCAA diet had decreased autophagy markers, although not significant. Although BCAAs did not affect muscle function, fibrosis, or protein synthesis effectors, this study illustrates the functionality of mdx muscles over time. It would be interesting to see how the different muscle fiber types are affected by DMD, noting the differences between the diaphragm, heart, red muscle, and white muscle fibrosis markers. Although there was no increase in mTORC1 effectors with an elevated BCAA diet, it would be interesting to determine muscle protein synthesis, myofibrillar protein synthesis, and total protein turnover in the mdx mouse with an elevated BCAA diet, although the dietary intervention started when mice arrived at 4 weeks of age, earlier intervention may be beneficial early in the disease process.
43

Downhill Treadmill Running Does Not Induce Muscle Damage in FVB Mice

Benson, Brenda 01 September 2014 (has links)
Downhill treadmill running is a commonly used method to cause exercise-induced muscle damage, especially in rodents. Previous studies have evaluated which muscles in rats are more prone to damage. However research using downhill run mice (DHR) has shown some inconsistencies in which muscle is best analyzed for damage. Purpose: The purpose of this study was to quantify the damage in various muscles in a mouse after a single bout of DHR. Methods: Male FVB mice (5 months) were injected with Evans Blue dye (EBD) and then either used as control (CON) or run downhill (-16°) at 20 meters per minute (m/min) for 30 minutes. Twenty-four hours after exercise, the gastrocnemius, soleus, plantaris, tibialis anterior (TA), quadriceps, and triceps brachii muscles were harvested (n = 6 per group per muscle). Cross-sectional slices were obtained, fixed, and mounted to analyze EBD infiltration, dystrophin (Dys), and centralized nuclei. The samples were then imaged using a fluorescent microscope. The entire sample was captured using 20x magnification, and the total number of cells, EBD+, Dys-, and centralized nuclei, were counted. A blood sample was collected to measure plasma creatine kinase (CK) activity. Results: Total number of cells was not different between groups (p > 0.05). No significant difference in any of the markers of muscle damage was found in any muscle between CON and DHR (p > 0.05). Conclusion: These data suggest that DHR does not induce muscle damage in adult (5 months) male FVB mice.
44

Exploring Dystrophin-Mediated Control of Neural Stem Cell Fate Associated with Intellectual Disability In Duchenne Muscular Dystrophy Patients

Thompson, Shannon 13 September 2018 (has links)
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive neuromuscular disease characterized by progressive muscle-wasting and loss of mobility. One-third of patients with DMD are also affected by cognitive impairments such as a lower than average IQ and impaired working memory, comorbid with neuropsychiatric disorders such as anxiety and autism-related behaviours. DMD is caused by mutations in the DMD gene resulting in the deletion of the full-length dystrophin protein (Dp427) and, dependent on mutation, other dystrophin isoforms. These isoforms are predominantly found in the brain and deletion may impact on cognition. The most commonly used animal model to study DMD is the mdx mouse which completely lacks Dp427 but no other DMD isoforms. Although the muscle phenotype is well-established, behavioural characterization of the mdx mouse model has been inconclusive. In this thesis I investigated the hippocampal and amygdala cellular and behavioural phenotypes of the mdx mouse. I show that post-natal neural stem-like cell division in the SGZ is altered in the absence of Dp427 resulting in enhanced symmetric division. I show in vitro that primary mdx cultures are fewer and smaller than wild-type, consistent with an increase in symmetrical self-renewal whereas secondary cultures are fewer and larger, consistent with a shift in symmetric division producing transit-amplifying type 2a daughter cells. I next characterized the mdx mouse model using a battery of behavioural tests. Data presented here show that mdx mice do not exhibit an anxious phenotype, do not display autism-related behaviours, and do not display impairments in and spatial learning or memory. However, associative learning, as measured in the fear conditioning paradigm is enhanced in mdx mice. Lastly, I attempted to generate three different brain-specific dystrophin knock-out mouse models to examine role of other dystrophin isoforms. While none of the models were able to deplete dystrophin from brain, given the inverse relationship between Cre-mediated efficiency and the genetic distance of the loxP sites in the fDMDH mouse employed, I do provide important insight into the presence and absence of the muscle-specific enhancers in constructs commonly used to generate brain-specific mouse models. Taken together, this thesis provides converging evidence to indicate that loss of Dp427 impacts on fear associative learning and stem-cell like division in the SGZ but likely does not underlie the non-progressive cognitive impairments affecting one-third of all DMD patients.
45

Characterisation and strategic treatment of dystrophic muscle

Laws, Nicola January 2005 (has links)
The mdx mouse is widely used as a model for Duchenne Muscular Dystrophy, a fatal X-linked disease caused by a deficiency of the sub-sarcolemmal protein, dystrophin. This dissertation reports characterisation of the features of dystrophy in the mdx mouse, including parameters such as electrophysiological and contractile properties of dystrophic cardiac tissue, quantitative evaluation of kyphosis throughout the mdx lifespan, and contractile properties of respiratory and paraspinal muscles. Following these characterisation studies, the efficacy of antisense oligonucleotides (AOs) to induce alternative mRNA splicing in mdx skeletal muscles (diaphragm and paraspinal muscles) was evaluated. The left atria of younger (<6 weeks) and older (>15 months) mdx mice showed consistently lower basal forces and responsiveness to increased calcium, while action potential duration was significantly shorter in young mice (3 weeks) and older mice (9 and 12 months) (P<0.05). Cardiac fibrosis increased with age in mdx atria and ventricles and was elevated in young (6-8 weeks) and old (15 months) mdx compared to control mice (P<0.01). This study provided insights into DMD cardiomyopathy, and suggested that very young or old mdx mice provide the most useful models. Mdx mice show thoracolumbar kyphosis like boys with Duchenne Muscular Dystrophy. A novel radiographic index, the Kyphotic Index (KI), was developed and showed that mdx mice are significantly more kyphotic from 9 months of age, an effect maintained until 17 months (P<0.05). At 17 months, the paraspinal and respiratory muscles (latissimus dorsi, diaphragm and intercostal muscles) are significantly weaker and more fibrotic (P<0.05). Administration of AOs at four sites within the diaphragm at 4 and 5 months of age significantly increased twitch and tetanic forces compared to sham treated mdx (P<0.05). However, no difference in collagen was evident and dystrophin was not detected, possibly due to the low concentration of AO utilised. This study suggested that AOs can provide functional improvement in treated skeletal muscles. Monthly injections with AOs into the paraspinal muscles from 2 months to 18 months of age alleviated kyphosis, without significantly altering twitch and tetanic forces of latissimus dorsi, diaphragm and intercostal muscles. There was evidence of less fibrosis in diaphragm and latissimus dorsi muscles (P<0.05) and reduced central nucleation of the latissimus dorsi and intercostal muscles (P<0.05). Again, dystrophin was not detected by immunoblot. These studies indicate that very young and old mdx mice display previously uncharacterised dystrophic features, and are useful models for testing new therapies such as AOs. Low doses of AOs were shown to be safe and efficacious for long-term use, however there remains a need for testing higher concentrations and improved delivery strategies.
46

New insights into the disease mechanisms of Duchenne muscular dystrophy through analyses of the dystrophin, I[kappa]B[beta], and CASK proteins

Gardner, Katherine Lynn, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 147-163).
47

Aging differences in mechanisms of human skeletal muscle hypertrophy

Kosek, David J. January 2007 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2007. / Title from PDF title page (viewed on Feb. 18, 2010). Includes bibliographical references.
48

Cerebellar pathophysiology in a mouse model of Duchenne muscular dystrophy

Snow, Wanda Mae 13 November 2012 (has links)
This series of experiments investigated dystrophin localization in the normal cerebellum and examined Purkinje neuron function in normal and dystrophin-deficient mice to better understand the physiological basis for cognitive deficits associated with Duchenne muscular dystrophy (DMD), a common genetic disorder among children. Cognitive impairments are consistently reported in DMD, yet precise mechanisms for their occurrence are unknown. Dystrophin protein, which is absent in DMD, is normally localized to muscles and specific neurons in the brain. Purkinje neurons are rich in dystrophin, specifically in somatic and dendritic membranes. Studies demonstrate perturbed cerebellar function in the absence of dystrophin, suggesting that DMD should be regarded as a cerebellar disorder in addition to being considered a neuromuscular disorder. However, theory and evidence are not generated from overlapping information: research investigating cerebellar involvement in DMD has focused on the vermal region, associated with motor function. The lateral region, implicated in cognition, has not been explicitly examined in DMD. The first experiment revisited the issue of dystrophin distribution in the mouse cerebellum using immunohistochemistry to investigate qualitative and quantitative differences between cerebellar regions. Both regions showed dystrophin localized to Purkinje neuron somatic and dendritic membranes, but dystrophin density was 30% greater in the lateral than the vermal region. The second experiment examined intrinsic electrophysiological properties of vermal and lateral Purkinje neurons from wild-type (WT) mice and from the mdx mouse model of DMD which lack dystrophin. Significant differences in action potential firing frequency, regularity, and shape were found between cerebellar regions. Purkinje neurons from mdx mouse cerebellum exhibited membrane hyperpolarization and irregular action potential firing, regardless of region. Spontaneous action potential firing frequency was reduced in Purkinje neurons from lateral cerebellum in mdx mice relative to controls, demonstrating that a loss of dystrophin causes a potent dysregulation of Purkinje neuron function in the region associated with cognition. This research extends our understanding of cerebellar pathology in DMD and its potential relevance to cognitive deficits in the disorder. Moreover, this research further supports the role of the cerebellum as a structure important for cognition and contributes to our understanding of dystrophin’s role in the brain.
49

Cerebellar pathophysiology in a mouse model of Duchenne muscular dystrophy

Snow, Wanda Mae 13 November 2012 (has links)
This series of experiments investigated dystrophin localization in the normal cerebellum and examined Purkinje neuron function in normal and dystrophin-deficient mice to better understand the physiological basis for cognitive deficits associated with Duchenne muscular dystrophy (DMD), a common genetic disorder among children. Cognitive impairments are consistently reported in DMD, yet precise mechanisms for their occurrence are unknown. Dystrophin protein, which is absent in DMD, is normally localized to muscles and specific neurons in the brain. Purkinje neurons are rich in dystrophin, specifically in somatic and dendritic membranes. Studies demonstrate perturbed cerebellar function in the absence of dystrophin, suggesting that DMD should be regarded as a cerebellar disorder in addition to being considered a neuromuscular disorder. However, theory and evidence are not generated from overlapping information: research investigating cerebellar involvement in DMD has focused on the vermal region, associated with motor function. The lateral region, implicated in cognition, has not been explicitly examined in DMD. The first experiment revisited the issue of dystrophin distribution in the mouse cerebellum using immunohistochemistry to investigate qualitative and quantitative differences between cerebellar regions. Both regions showed dystrophin localized to Purkinje neuron somatic and dendritic membranes, but dystrophin density was 30% greater in the lateral than the vermal region. The second experiment examined intrinsic electrophysiological properties of vermal and lateral Purkinje neurons from wild-type (WT) mice and from the mdx mouse model of DMD which lack dystrophin. Significant differences in action potential firing frequency, regularity, and shape were found between cerebellar regions. Purkinje neurons from mdx mouse cerebellum exhibited membrane hyperpolarization and irregular action potential firing, regardless of region. Spontaneous action potential firing frequency was reduced in Purkinje neurons from lateral cerebellum in mdx mice relative to controls, demonstrating that a loss of dystrophin causes a potent dysregulation of Purkinje neuron function in the region associated with cognition. This research extends our understanding of cerebellar pathology in DMD and its potential relevance to cognitive deficits in the disorder. Moreover, this research further supports the role of the cerebellum as a structure important for cognition and contributes to our understanding of dystrophin’s role in the brain.
50

Cardiac calcium handling in the mouse model of Duchenne Muscular Dystrophy

Woolf, Peter James January 2003 (has links)
The dystrophinopathies are a group of disorders characterised by cellular absence of the membrane stabilising protein, dystrophin. Duchenne muscular dystrophy is the most severe disorder clinically. The deficiency of dystrophin, in the muscular dystrophy X-linked (mdx) mouse causes an elevation in intracellular calcium in cardiac myocytes. Potential mechanisms contributing to increased calcium include enhanced influx, sarcoplasmic reticular calcium release and\or reduced sequestration or sarcolemmal efflux. This dissertation examined the potential mechanisms that may contribute to an intracellular calcium overload in a murine model of muscular dystrophy. The general cardiomyopathy of the mdx myocardium was evident, with the left atria from mdx consistently producing less force than control atria. This was associated with delayed relaxation. The role of the L-type calcium channels mediating influx was initially investigated. Dihydropyridines had a lower potency in contracting left atria corresponding to a redued dihydropyridine receptor affinity in radioligand binding studies of mdx ventricular homogenates (P<0.05). This was associated with increased ventricular dihydropyridine receptor protein and mRNA levels (P<0.05). The function of the sarcoplasmic reticulum in terms of release and also sequestration of calcium via the sarco-endoplasmic reticulum ATPase were investigated. A lower force of contraction was evident in mdx left atria in response to a range of stimulation frequencies (P<0.05) and concentrations of extracellular calcium (P<0.05). However, in the presence of 1 nM Ryanodine to block sarcoplasmic reticular calcium release, increased stimulation frequency caused similar forces to those obtained in control mice suggesting enhanced calcium influx via L-type calcium channels in mdx. Rapid cooling contractures showed a reduced contracture in mdx compared to control in response to cooling. This suggests some dysfunction in SR storage, which may be associated with the delayed relaxation time. Concentration-response curves to inhibitors of the sarco-endoplasmic reticulum showed no difference in function of the enzyme responsible for calcium uptake into the sarcoplasmic reticulum. Although sarco-endoplasmic reticulum ATPase mRNA was upregulated, no functional benefit was evident. This study indicates that a deficiency of dystrophin leads to upregulation of L-type calcium channels that contribute to increased calcium influx, with no functional change in sarcoplasmic reticular sequestration. Upregulation of the influx pathway is a potential mechanism for the calcium overload observed in mdx cardiac muscle.

Page generated in 0.0729 seconds