• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1470
  • 517
  • 492
  • 327
  • 219
  • 181
  • 144
  • 31
  • 30
  • 24
  • 23
  • 23
  • 18
  • 18
  • 17
  • Tagged with
  • 4188
  • 414
  • 395
  • 378
  • 367
  • 359
  • 354
  • 329
  • 315
  • 308
  • 304
  • 299
  • 293
  • 288
  • 287
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
861

Begehungen: Last Nuclear Bomb Memorial

Toepffer, Catharina 22 March 2024 (has links)
Bei dem architektonischen Entwurf 'Begehungen' handelt es sich um die thematische Auseinandersetzung mit der Planung einer Gedenkstätte gegen den Einsatz und die Testung von Atomwaffen. Dies geschieht auf dem Gelände des 'Salmon Site' im Osten der USA. Dieses Gebiet war Schauplatz zweier unterirdischer nuklearer Testungen, die Teil des amerikanischen 'Vela Projekts' waren. Die Explosionen erfolgten im Jahr 1964 und 1966. Bis heute ist das Gebiet eingezäunt und unbewohnt. Der Entwurf soll eine Heranführung an die Thematik sein. Er behandelt den Ort als Erinnerung und setzt sich mit dieser Erinnerung auseinander. Es wurden landschaftliche Parameter aufgestellt, die den Ort erfahrbar machen sollen.
862

Designing a Pore-Forming Toxin Cytolysin A (ClyA) Specific to Target Cancer Cells

Avelino, Alzira Rocheteau 07 November 2014 (has links) (PDF)
Cytolysin A (ClyA) is a member of a class of proteins called pore-forming toxins (PFTs). ClyA is secreted by Gram-negative bacteria, and it attacks a number of mammalian cells by inserting into and forming channels within the cell membrane (Oscarsson J et al., 1999). It has been suggested that ClyA binds to cholesterol (Oscarsson J et al., 1999) and thus can insert into the membranes of many different cell types of eukaryotic origin. In our studies we propose to engineer a ClyA protein that can only attack a small subset of cell types. We propose to engineer ClyA that can be only activated when exposed to specific cell-surface proteases produced by a specific cell type. We ultimately want to target breast cancer cells that differentially secrete or express proteases such as matrix-metalloproteases (Stautz D et al., 2012; Zhang, M et al. 2013). To engineer this protein we took advantage of the N-terminus of ClyA. The N-terminus of ClyA, which is highly hydrophobic (Oscarsson J et al), undergoes a conformational change to insert into the target cell membrane (Oscarsson J et al). This conformational change allows ClyA to penetrate the target membrane to form a transmembrane domain of ClyA. The hydrophobic nature of lipid membranes makes it highly unfavorable for any charged residues to cross the membrane (Hunt J 1997). With this in mind, we hypothesize that negative charges inserted into the N-terminus of ClyA will inhibit it from inserting into the membrane. Thus, we mutated the N-terminus of the ClyA protein by inserting an inactivation site composed of negatively charged amino acids that we hypothesize would prevent insertion into the plasma membrane of the target cell. Once we confirmed that this construct was an inactive ClyA mutant, we inserted a thrombin cleavage site right after the inserted negative charges. This site should allow us to remove the negative charges once the protein is exposed to thrombin. Once the negative charges are removed, the protein should recover its activity. This approach will allow us to create a version of ClyA that is protease-switchable.
863

Timber Harvesting and Site Preparation Effects on Soil Quality for Loblolly Pine Growing on the Lower Coastal Plain of South Carolina

Kelting, Daniel Ladd 28 April 1999 (has links)
The Lower Coastal Plain of the southeastern United States is a major wood producing region. The region is characterized by a combination of nearly-level topography, poorly-drained soils, and high rainfall, which results in a perched water table in some soils that inundates the surface several times each year. Harvesting timber under wet site conditions often results in extensive soil compaction, rutting, soil displacement, and waterlogging. Forest managers are concerned that these visually-displeasing soil disturbances may cause site damage and reduced productivity. These concerns were addressed in an operational-scale field experiment conducted in South Carolina. The objectives of this experiment were to determine: (i) if soil disturbance changes key soil properties and processes; (ii) if soil disturbance reduces loblolly pine productivity; and, (iii) if disturbance can be mitigated with site preparation practices? Three 20-ha, 20-yr-old loblolly pine (Pinus taeda L.) plantations were harvested under wet and dry conditions to create a broad gradient in soil disturbance. Within each harvested plantation, a subset of 3-ha plots were site prepared by either bedding, or mole-plowing plus bedding, then all sites were established as 3rd -rotation pine plantations. Prior to site preparation, each plot was classified and mapped using a 5 by 5 soil disturbance (none to churned) by organic debris (none to slash piles) classification matrix. Within each plot, data were collected on several soil physical, chemical, and biological properties over a 2-yr period following site preparation. Key soil properties were integrated into a Soil Quality Index (SQI) and compared to aboveground productivity of 2-yr-old loblolly pine trees growing on closely-spaced (30 by 30 cm) bioassay plots planted across the gradient of soil disturbance. The soil physical properties were used to determine the least limiting water range (LLWR), the range in soil water content within which root growth is not limited. Soil compaction and deep rutting reduced the LLWR. Retention of logging slash improved the LLWR for compacted and rutted soils. Site preparation improved the quality of the soil physical environment across all levels of soil disturbance. Soil disturbance had no effect on soil chemical or biological properties as evidenced by no change in soil pH, ECEC, base saturation, available P, or net N mineralization with disturbance. The base saturation exceeded 80 % on all sites, with Ca saturation controlling soil pH. The high base saturation buffered any redox-induced changes in soil chemistry that would have resulted from disturbance. The results showed that high fertility is an important mechanism for buffering the potentially-negative effects of soil disturbance on the soil nutritional environment. Site preparation changed soil chemical properties, but the changes were probably associated with tillage effects on organic matter and clay content, not redox processes. The SQI showed that surface soil compaction and deep rutting reduced soil quality, mainly by decreasing the LLWR and aeration depth. Site preparation mitigated the effects of most disturbances on soil quality, evidenced by similar aboveground biomass production among soil disturbance classes after bedding. A regression model was developed for predicting aboveground biomass production as a function of SQI. SQI explained 73 % of the variation in aboveground biomass production. The regression model showed that compression tracks and rutting decreased aboveground biomass production compared to undisturbed soils. The long-term effect of these disturbances on productivity will depend on natural soil recovery processes. However, these early results suggest that compaction and rutting should be minimized on similar sites, especially if sites will not be bedded before reforestation. The mole-plow / bedding treatment increased aboveground biomass production, indicating that this experimental treatment may be a viable practice for enhancing productivity. / Ph. D.
864

A Framework for Site Analysis with Emphasis on Feng Shui and Contemporary Environmental Design Principles

Xu, Jun 14 November 2003 (has links)
This research proposes a new site analysis methodology in the form of an integrated framework. The framework separates the site analysis process into different models, incorporates each model, and considers the interaction between them. The most important models are the environmental models (climate, geology, hydrology, topography, and vegetation models), social-cultural models, economic models, and infrastructure models. Each model also contains several important factors. The study identifies and organizes environmental factors within the framework that influence site analysis and design. Based on the applicability of feng shui principles and their interpretations into measurable factors, this research compares and incorporates feng shui and contemporary environmental design theories, and summarizes essential environmental factors. The emphasis on environmental factors from these models may lead to a better understanding of the relationships between humankind and the natural environment. The proposed framework is implemented into a computer simulation program, titled SiteOne, to demonstrate the concepts and ideas, with an emphasis on environmental factors. This research uses the town of Reston in Fairfax County, Virginia, as the study area because of the availability of information. SiteOne analyzes a range of alternatives and then derives solutions from the suggested site conditions in the form of GIS maps. There are various modules that make up the prototype system: namely an analysis module, a database module, and a result generation module. SiteOne helps professionals collect a wide range of information and select corresponding criteria in the early stages of design. It also provides visual analysis based on selected criteria and models. Therefore, it can act as an educational knowledge component for professionals as well as the general public. / Ph. D.
865

Quantification of Uncertainties for Conducting Partially Non-ergodic Probabilistic Seismic Hazard Analysis

Bahrampouri, Mahdi 01 July 2021 (has links)
Estimating local site effects and modifying the uncertainty in ground motion predictions are two indispensable parts of partially non-ergodic site-specific PSHA. Local site effects can be estimated using site response simulations or recorded ground motions at the site. When such predictions are available, the aleatory variability of ground motions used in PSHA can be changed to the single station sigma value. However, in these cases, the epistemic uncertainty in predicting site effects must be incorporated into the hazard analyses. This research focuses on the challenges specific to conducting partially non-ergodic site-specific PSHA using recorded ground motions or site response analysis. The main challenge in estimating local site effects using recorded data is whether ground motions collected in a relatively short time can be used to estimate site effects for long return period events. We first develop a database for recorded ground motions at the KiK-net array to investigate this question and use this database to develop a predictive model for the Fourier Amplitude Spectra of ground motions. The ground motion model (GMM) residuals are used to investigate the stability of site terms across different tectonic regimes. We observe that empirical site terms are stable across different tectonic regimes. This observation allows the use of ground motions from any tectonic regime (whether they belong to the tectonic regime that controls the hazard or not) to estimate local site effects. Moreover, in Fourier amplitude, site effects are not dependent on event magnitude and source to site distance; therefore, estimates of site effects from low magnitude events can be easily extrapolated to larger events. The Fourier amplitude GMM developed in this study adds to the library of Fourier amplitude models to be used in future partially non-ergodic site-specific PSHAs. In practice, one of the most common tools for simulating wave propagation is 1-D site response analysis. Two central assumptions in 1-D site response analysis are that the soil profile is comprised of horizontal soil layers of infinite extent and that the vertically propagating SH-waves control the horizontal component of ground motion. SH-waves tend to propagate vertically near the surface because as earthquake waves hit softer layers traveling from the source to the site, they refract until the path becomes steeply inclined. The validity of both assumptions in 1-D site response depends on the geological setting at the site and the geology between the earthquake source and the site, raising the question of which sites are suitable for 1-D site response analysis and what the model error in 1-D site response analysis is. We use the GMM developed for FAS to estimate observed and empirical site terms. The empirical site effects are then compared with the theoretical site effects to determine whether sites are amenable to 1-D site response analyses, and to quantify the model error in the analyses. / Doctor of Philosophy / It is impossible to predict future earthquake-induced ground motions due to randomness in the process and a lack of knowledge. In fact, there are significant uncertainties not only in predicting the location, time, and magnitude of a future earthquake but also in predicting the intensity of ground motion induced by a given future earthquake. Therefore, assessing the safety of the human environment against earthquake hazards requires a method that considers all sources of uncertainties. To this end, Earthquake Engineers have developed Probabilistic Seismic Hazard Analysis(PSHA) framework. Structural engineers use the results of PSHA to design a new structure or assess the safety of an existing building. The accuracy of PSHA estimations leads to designs that are both safe and cost-efficient. The distribution of possible ground motions induced by a given earthquake scenario significantly controls the result of PSHA. This distribution should consider the effect of source, source to site path, and local site effects. This research focuses on improving PSHA results by estimating local site effects using recorded ground motions or simulating wave propagation in the site. In estimating local site effects using recorded data, the local site effect observed in ground motions collected in a relatively short time window is used to estimate hazards from all scenarios. However, the collected ground motions usually belong to frequent low magnitude events that are different from large magnitude events that control the hazard. This difference requires either using a measure of local site effect that is independent of the magnitude and distance of the earthquake or considering the effect of magnitude and distance on the local site effect estimate. Moreover, since frequent events sample different sources and paths than large events, we need to make sure the local site effect is consistent across different sources and paths. This research develops Ground Motion Models(GMMs) for Fourier amplitude, a linear function of ground motion times series, using Japanese ground motions. The ratio of Fourier amplitude at the surface over bedrock is a measure of local site effect that is not dependant on magnitude and distance. The model is then used to see if the trade-off between source and site effect and path and site effect is significant or not. In practice, one of the most common tools for simulating wave propagation is 1-D site response analysis. Two central assumptions in 1-D site response analysis are that the soil profile comprises horizontal soil layers of infinite extent and that the vertically propagating horizontal shear waves (SH-waves) control the horizontal component of ground motion. SH-waves tend to propagate vertically near the surface because as earthquake waves hit softer layers traveling from the source to the site, they refract until the path becomes vertically inclined. The validity of both assumptions in 1-D site response depends on the geological setting at the site and the geology between the earthquake source and the site, raising the question of which sites are suitable for 1-D site response analysis and what the model error in 1-D site response analysis is. We use the GMM developed for FAS to estimate empirical local site effects. The empirical site effects are then compared with the theoretical site effects to determine whether sites are amenable to 1-D site response analyses and quantify the model error in the analyses.
866

Exploiting muscarinic acetylcholine receptors as an insecticidal target to enhance the toxicity of gamma-amino butyric acid channel blockers and the continued challenges with resistance

Xie, Na 19 May 2022 (has links)
Muscarinic acetylcholine receptors (mAChRs) are G-protein-coupled receptors that are underutilized for controlling insect pests despite their involvement in various physiological functions. To-date, there are no commercialized insecticides targeting insect mAChRs. In this dissertation, effective target-site synergism was demonstrated in susceptible Drosophila melanogaster where mAChR agonism by pilocarpine enhanced the toxicity of insecticides targeting gamma-aminobutyric acid (GABA)-gated chloride channels, indicating the potential of insect mAChRs as a target for developing novel insecticides/synergists to control resistant pests. A point mutation (A301S) in the GABA-gated chloride channel confers resistance to dieldrin (Rdl), lindane, and fipronil, which I have confirmed using different routes of exposure. However, the same synergistic effect was not achieved in the resistant strain with the presence of this target-site mutation. This difference between two strains is perplexing because there is a change in the efficacy of several compound classes that do not directly act upon GABA-gated chloride channels. Specifically, a point mutation appears to influence how the insect central nervous system (CNS) responds to muscarinic compounds, type I pyrethroids, and acetylcholinesterase (AChE) inhibitors. In the case of acetylcholinesterase, the resistant insect increases the expression of Ace gene encoding this enzyme. Fully understanding how the CNS responds to receptor modifications is not well understood and could have a significant impact to pest management strategies. / Doctor of Philosophy / Insects significantly influence the food production, health, and the economy of the human world. Control of insect pest outbreaks relies on the proper use of insecticides. However, extensive application of insecticides has resulted in pests being able to adapt to these compounds, through insecticide resistance. Ultimately, this will affect currently used pest management strategies. To help alleviate this urgent problem, my dissertation provided an alternative strategy to control pests, which is to use a mixture of two molecules that influence different targets in the insect nervous system that could reduce the use of toxic or deleterious compounds that are the active ingredients. It is important to not solely rely on current insecticides on the market and find new insecticides that work differently. I used the fruit fly to help me understand how insecticide mixtures would work, but also understand how the complex nature of insect adaptations at the level of the nervous system continues to threaten pest management. Based on studies that were performed here, we now have a better understanding on how to investigate the failure of insecticides in the field, which will ultimately help us make new molecules.
867

An Architecture of Reconciliation

Bolton, Carlton Robert 05 November 2001 (has links)
The reconciliation of architectural idea and built form is accomplished by the materialization of the idea through the use of specific materials with their inherent qualities and restrictions. The learning begins when one sees these restrictions not as a hinderance to the idea, but that which can reveal the very essence of Architecture. The virtue of this architecture of reconciliation lies in its ability to help Man understand his surroundings and place in the world at large. This is accomplished by bringing an awareness and appreciation of the tangible, physical world to the individual. However, we must use not only our eyes, but all of our senses to truly know a place. It is in this knowing, this understanding, that one is able to dwell. In dwelling one finds true peace. / Master of Architecture
868

Methods for Evaluating Aquifer-System Parameters from a Cumulative Compaction Record

Vanhaitsma, Amanda Joy 12 August 2016 (has links)
Although many efforts and strategies have been implemented to reduce over-pumping of aquifer-systems, land subsidence is still a serious issue worldwide. Accurate aquifer characterization is critical to understand the response of an aquifer-system to prolonged pumping but is often difficult and expensive to conduct. The purpose of this thesis is to determine the validity of estimating aquifer-system parameters from a single cumulative compaction record and corresponding nested water-level data deconvolved into temporal components. Over a decade of compaction and water-level data were collected from an extensometer and multi-level piezometer at the Lorenzi site in Las Vegas Valley and when graphed yearly, seasonal, and daily signals are observed. Each temporal signal reflects different characteristics of the aquifer-system, including the distinction between aquifer and aquitard parameters, as the three temporal stresses influence the compaction record uniquely. Maximum cross-correlation was used to determine the hydrodynamic lag between changing water-levels and subsidence within the seasonal signal while principal components analysis was used to statistically verify the presence of the three temporal signals. Assumptions had to be made but nearly all estimated Lorenzi site aquifer-system parameters fell either within the reasonable range or were similar in magnitude to parameter values estimated in previous studies. Unfortunately, principal components analysis was unable to detect the three temporal signals. A cumulative compaction record may be difficult to obtain but analyzing the precision measurements of an extensometer results in precise aquifer-system parameters and as the precision of aquifer-system parameters increase so does the ability to sustainably manage groundwater. / Master of Science
869

Shallow subsurface deformation along the Pen Branch Fault in South Carolina: interpretation from seismic refraction stack sections

Moore, Leslie Diane 18 September 2008 (has links)
The Pen Branch Fault is a reactivated, high angle, reverse basin border fault that dips to southeast from the basement (Triassic-Paleozoic-Precambrian in age) to near vertical through the Atlantic Coastal Plain sediments (Late Cretaceous to Recent in age) of the Savannah River site in South Carolina. The fault movement has occurred through Late Cretaceous to Tertiary. Faulting might penetrate as shallow as the Dry Branch and the Tobacco Road Sand Formations (Late Eocene). An investigation with high resolution reflection seismic data is undertaken along the Pen Branch Fault. Five of the seismic lines are reprocessed to help in determining the upward depth of penetration of this fault. This is done by utilizing refracted arrivals from the multifold reflection data. The shallowest refractors (4 - 18 m) imaged have an average velocity of 1700 m/s. All of the lines exhibit events that are not flat lying across the data where the fault is believed to be. The lines possess deformation such as offsets, upwarping and channels. Deformation can be related to the Pen Branch Fault as shallow as 4 m from the surface. Displacements along the lines vary from 1 m up to 5 m. Reverse sense of motion is mainly exhibited along the fault zone that is covered by this study. The events resolved portray the Pen Branch Fault in a fault zone of subparallel faults and splays. / Master of Science
870

Seismic Site Characterization for the Deep Science and Engineering Laboratory (DUSEL) at Kimballton, Virginia

Shumaker, Adam Niven 29 June 2005 (has links)
The National Science Foundation has announced a plan to establish a Deep Underground Science and Engineering Laboratory (DUSEL) for interdisciplinary research in physics, geosciences, biosciences and engineering. The proposed laboratory will extend to a depth of about 2200 meters and will consist of research facilities for long term study. To date, eight sites in North America have been proposed to host DUSEL. One of these sites, known as Kimballton, is located near Butt Mountain in Giles County in southwestern Virginia. Two seismic lines were acquired along the top of Butt Mountain in June of 2004 to support the ongoing integrated site characterization effort by the Kimballton Science Team. Both lines, approximately 3 km in length, are standard multifold seismic reflection data aimed at imaging faults, thrust sheets, and repeated sections of Paleozoic rocks in the vicinity of the proposed Kimballton site. Crooked line geometry, irregular geophone spacing, ground roll, and poor impedance contrasts between juxtapositioned rock units were challenges in processing the data. Non-standard processing techniques included the use of travel time tomography to accurately constrain near surface velocities, the use of 2D median filters to remove ground roll, and stacking only offsets exceeding 500 m. Interpretation of seismic data supports a triplicated stratigraphic section caused by the stacking of the the St. Clair and Narrows thrust sheets. The St. Clair and Narrows faults are interpreted as shear zones within ductile units of the Martinsburg Formation. 3D travel time tomography was used to build a near surface velocity model of Lines 1 and 2 for the purposes of imaging near surface structure and constraining the extent of topographic lineaments, which are interpreted as bedrock joint systems. Interpretation of the velocity models suggests that the broadly folded strata of the Butt Mountain synclinorium dip gently to the east along the hinge surface. The surface extrapolation of the Lookout Rock fault and the intersection of topographic lineaments with the seismic lines are expressed as low velocity zones that extend to depths of 150 m. This may be related to accelerated weathering along jointed rock surfaces. Results of this study have already been incorporated into the NSF proposal submitted by the Kimballton Science Team (http://www.phys.vt.edu/~kimballton/s2p/b2.pdf). / Master of Science

Page generated in 0.0767 seconds