• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 56
  • 23
  • 13
  • 11
  • 11
  • 9
  • 9
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 365
  • 43
  • 40
  • 37
  • 35
  • 34
  • 30
  • 26
  • 25
  • 25
  • 22
  • 21
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Conformational Changes Of Vinculin Tail Upon F-Actin And Phospholipid Binding Studied By EPR Spectroscopy

Abé, Christoph 29 June 2010 (has links)
The cytoskeletal protein vinculin plays a key role in the control of cell-cell or cell-matrix adhesions. It is involved in the assembly and disassembly of focal adhesions and affects their mechanical stability. While many facts highlight the importance and significance of vinculin for vital processes, its precise role in the regulation of cell adhesions is still only partially understood. Various EPR methods are used in this work in order to study the vinculin tail (Vt) domain in an aqueous buffer solution and its structural changes induced by F-actin and acidic phospholipids. EPR results in combination with a rotamer library approach (RLA), MD simulation and other computational methods allowed the construction of molecular models of Vt and dimeric Vt in the presence and absence of its binding partners. Furthermore, X-band orientation selective DEER measurements were applied on a Vt double mutant. It could be shown that the determination of the mutual orientation of protein bound spin labels is possible at X-band frequencies, if the orientation correlation of the spin label pair is strong. The method established here can be used to determine valuable information about proteins and nucleic acids, expanding the virtue of DEER spectroscopy as a tool for structure determination.
212

Posterior Neural Plate-Derived Cells Establish Trunk and Tail Somites in the Axolotl (Ambystoma mexicanum)

Pawolski, Verena 20 July 2021 (has links)
The vertebrate tail is unique for each species and fulfils a broad spectrum of functions. In the axolotl (Ambystoma mexicanum), a tailed amphibian, the tail constitutes one-third of the full body length and is necessary for swimming. Despite its size, most of the tail's tissues are derived from the posterior neural plate of the neurula. Although giving rise to neuronal structures of the central nervous system along most of its length, the most posterior part of the neural plate develops preponderantly into presomitic mesoderm (PSM) which forms muscle, bone and cartilage of the tail and posterior trunk. During development, the posterior neural plate reverses its orientation during an anterior turn movement (Taniguchi et al., 2017). Cells of the most posterior plate region become now localised in an anterior position while previously more anterior neural plate cells land at a more posterior site. Simultaneously, the axial neural tube and notochord extend themselves posteriorly. The PSM, developing bilaterally to the central axis, is integrated into posterior tail expansion while forming new somites at its anterior end. It is still elusive which morphological changes the PSM undergoes to facilitate tail formation and posterior elongation of the embryo. Furthermore, it remains enigmatic in what way PSM cells change their shape, orientation, migration behaviour and distribution to meet the requirements needed for adjusting PSM and somite morphology. With homotopic tissue transplantations of posterior neural plate cells from a gfp-expressing donor to a white (d/d) recipient, enabled specific labelling of all mesodermal cells of the tail. Otherwise, mesodermal cells of the trunk and tail can not be distinguished, neither genetically nor morphologically. With this cell labelling approach, the entire tail mesoderm could be imaged in toto. Thus, measurements of the morphological changes of the PSM and cell tracking in 3D was possible during development. With this technique, posterior neural plate cells could be shown to form parts of the posterior neural tube, the entire posterior PSM and the somites of the tail. During this course of development, the PSM becomes longer but does not increase its volume. Only when forming the somites, an increase in volume could be measured in the mesoderm. Single-cell labelling showed an anterior shift of cell movement led by medial PSM cells and followed by more laterally located cells. The anterior displacement happens simultaneously to the posterior elongation of the embryo. A hypothetical push by newly generated cells at the tail tip could be ruled out. Mitotic cells were evenly distributed in all tissues of the tail with a low proliferation rate. The morphological changes and anterior relocations of the tail mesoderm could, therefore, mainly be explained by cell migration. Therefore, further analyses focussed on cell migration, particularly on cellular characteristics displayed during migration such as shape, orientation, volume, distribution and filopodia organisation to obtain more profound information about how PSM cells migrate and contribute to somite formation. The net movement of tail elongation is directed posteriorly regardless of anteriorly relocating PSM cells. That is only feasible if a lateral expansion of the PSM by laterally migrating PSM cells is counteracted. There have been no studies on the lateral boundary so far. In the axolotl, the PSM is covered laterally by a two-layered epidermis and a fibronectin-rich extracellular matrix. After removing the tail epidermis, operated embryos showed missing or malformed tails, especially with lateral and dorsal curvatures and shortenings. Tail mesoderm examined in these cases showed an increased PSM volume and a lateral expansion of the tissue. A nearly normal tail developed when, after removing the epidermis, the embryos developed in 1% agarose supplemented with fibronectin. In contrast, a simple covering of the PSM with a nitrocellulose membrane, incubation in the softer methylcellulose or in agarose without fibronectin did not rescue tail formation. The lateral pressure on the PSM and a fibronectin-rich extracellular matrix seem necessary to preserve the tissue architecture of the PSM during tail formation. This study unravels the behaviour of individual PSM cells during their morphogenesis from single cells in the posterior plate of the neurula until somite formation in the tail bud. Overall, with specific labelling of tail mesodermal cells, their contribution to PSM morphology could be elucidated, and a more detailed model of tail elongation could be proposed: The posterior expansion of the neural tube and notochord pushes the posterior neural plate tissue posteriorly and squeezes the cells into an elongated mediolaterally oriented form. Labelling experiments of small individual cell groups showed that the ventral posteriormost cells are the first to escape this pressure by relocating anteriorly. Then, more anteriorly located cells follow, as well as dorsally located cells. These movements explain the anterior turn. Thereby, mesodermal cells start to migrate randomly, become elongated and change their orientation from mediolateral to anterior-posterior. Random cell migration leads to homogeneous cell mixing, which results in an aligned uniform tissue of trunk and tail PSM. The lateral constriction by the epidermis channels the undirected migration movements in an anterior direction. In this way, cells are directed towards the site of somite formation, the PSM narrows, and the embryo elongates posteriorly. This extension model includes the individual cell behaviour, which on the whole shapes PSM morphology. The analysed dynamic morphological changes of the PSM can be linked to the developmental processes of the tail and the posterior elongation of the axis.:1 Introduction 1.1 Embryonic tail formation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Mechanism of tail formation . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Molecular determination of cell populations in the tail bud . . . . . 5 1.2 Axial elongation of the vertebrate body plan . . . . . . . . . . . . . . . . . 8 1.2.1 Anterior body elongation (elongation of the trunk) . . . . . . . . . 8 1.2.2 Posterior body elongation (tail elongation) . . . . . . . . . . . . . . 9 1.3 Studying tissue morphology during development . . . . . . . . . . . . 11 1.4 Aim of the project . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 12 2 Materials 2.1 Chemicals and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Antibodies and dyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Techniqual equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Methods 3.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Breeding of axolotls and embryo collection . . . . . . . . . . . . 19 3.1.2 Injections with the vital dye DiI . . . . . . . . . . . . . . . . . . . 19 3.1.3 Tissue transplantation techniques . . . . . . . . . . . . . . . . . . . 19 3.2 Immunohistochemical staining . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Vibratome sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Whole-mount staining . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Optical tissue clearing protocols . . . . . . . . . . . . . . . . . . 21 3.3.1 Ethyl cinnamate based optical tissue clearing protocol . . . . . . . 21 3.3.2 SeeDB optical clearing protocol . . . . . . . . . . . . . . . . . . . . 22 3.4 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.1 3D image generation and processing . . . . . . . . . . .. . . . . . 22 3.4.2 Length measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.3 Manual segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.4 Automatic segmentation . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Determination of cellular parameters . . . . . . . . . . . . . . .. . . . . 25 3.5.1 Cell shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.2 Cell and tissue volume . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.3 Cellular distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.4 Closest neighbour analysis . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.5 Cell orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5.6 Length and orientation of filopodia . . . . . . . . . . . . . . . . . . 31 3.5.7 Distance of cells to a plane . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.8 Mitotic rate and spindle orientation . . . . . . . . . . . . . . . . . 32 4 Results 4.1 The presomitic mesoderm is associated with axial elongation. . . . . . 33 4.1.1 Elongation of the body axis . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 Contribution of different tissues . . . . . . . . . . . . . . . . . . . . 34 4.1.3 Differential contribution of mesoderm and epidermis . . . . . . . . . 40 4.1.4 Dual potential of mesodermal progenitors . . . . . . . . . . . . . . . 42 4.1.5 Mesodermal tissue expansion . . . . . . . . . . . . . . . . . . . . . 46 4.2 Cellular behaviour influences mesodermal morphology . . . . . . . . . 50 4.2.1 Cell division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2 Positional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 Cellular characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 59 Cell shape changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Change of cell orientation . . . . . . . . . . . . . . . . . . . . . . . 61 Orientation of filopodia . . . . . . . . . . . . . . . . . . . . . . . . . 63 Cell distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 The epidermis fascilitates mesodermal tissue integrity . . . . . . .. . . . 67 4.3.1 Mesodermal tissue integrity . . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 Malformed tails after epidermis removal . . . . . . . . . . . . . . . 70 4.3.3 Alteration in mesodermal tissue dimensions . . . . . . . . . . . . . 73 4.3.4 Alteration of cell density after epidermis removal . . . . . . . . . . 77 4.3.5 Rescue of tail formation . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Discussion 5.1 Cell migration of the presomitic mesodermal cells . . . . . . . . .. . . . 85 5.1.1 Continuity of gastrulation movements . . . . . . . . . . . . . . . . . 85 5.1.2 Directed migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.3 Random cell migration . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.4 Lateral mechanical constriction . . . . . . . . . . . . . . . . . . . . 90 5.2 Non-volumetric growth of the presomitic mesoderm . . . . . . . . . . . . . 91 5.3 Models of tail presomitic mesoderm formation . . . . . . . . . . . . . . . . 93 / Der Schwanz der Wirbeltiere ist bei jeder Art einzigartig und erfüllt ein breites Spektrum an Funktionen. Beim Salamander Axolotl (Ambystoma mexicanum), macht der Schwanz ein Drittel der gesamten Körperlänge aus und ist zum Schwimmen notwendig. Trotz seiner Größe stammen die meisten Gewebe des Schwanzes von der posterioren Neuralplatte der Neurula ab. Obwohl der größte Teil der Neuralplatte neuronale Strukturen des Zentralnervensystems hervorbringt, entwickelt sich der posteriore Teil der Neuralplatte überwiegend zu präsomitischem Mesoderm (PSM), das Muskeln, Knochen und Knorpel des Schwanzes und des hinteren Rumpfes bildet. Während der Entwicklung kehrt die posteriore Neuralplatte ihre Orientierung in einer anterioren Drehbewegung um (Taniguchi et al., 2017). Zellen der hintersten Plattenregion werden in eine anteriore Position verschoben, während zuvor anteriorere Neuralplattenzellen an einer posterioren Stelle landen. Gleichzeitig verlängert sich das axiale Neuralrohr und das Notochord nach posterior. Das PSM, das sich bilateral zur Zentralachse entwickelt, ist im Prozess der Schwanzverlängerung involviert, während es gleichzeitig an seinem vorderen Ende neue Somiten bildet. Es ist immer noch unklar, welche morphologischen Veränderungen das PSM durchläuft, um die Schwanzbildung und die posteriore Ausdehnung des Embryos zu ermöglichen. Darüber hinaus ist unbekannt, auf welche Weise PSM-Zellen ihre Form, Orientierung, ihr Migrationsverhalten und ihre Verteilung ändern, die für eine Veränderung der PSM- und Somitenmorphologie erforderlich sind. Mit homotopen Gewebetransplantationen von posterioren Neuralplattenzellen von einem gfp-exprimierenden Spender auf einen weißen (d/d) Empfänger, konnte eine spezifische Markierung aller mesodermalen Zellen des Schwanzes erreicht werden. Andernfalls können mesodermale Zellen des Rumpfes und des Schwanzes weder genetisch noch morphologisch unterschieden werden. Mit diesem Zellmarkierungsansatz konnte das gesamte Schwanzmesoderm in toto abgebildet werden. So waren Messungen der morphologischen Veränderungen des PSM und Zellverfolgung in 3D während der Entwicklung möglich. Mit dieser Technik konnte gezeigt werden, dass die Zellen der posterioren Neuralplatte Teile des posterioren Neuralrohrs, das gesamte posteriore PSM und die Somiten des Schwanzes bilden. Dabei wird das PSM länger, ohne sein Volumen zu vergrößern. Erst während der Bildung von Somiten wurde eine Volumenzunahme gemessen Einzelzellmarkierungen zeigten eine anteriore Verschiebung der Zellen, angeführt von medialen PSM-Zellen und gefolgt von lateral gelegenen Zellen. Diese anteriore Verschiebung geschieht gleichzeitig mit der posterioren Streckung des Embryos. Ein hypothetischer Schub durch neugebildete Zellen an der Schwanzspitze konnte ausgeschlossen werden. Mitotischen Zellen waren gleichmäßig in allen Geweben des Schwanzes verteilt und wiesen eine geringe Proliferationsrate auf. Die morphologischen Veränderungen und anterioren Verlagerungen des Schwanzmesoderms können daher hauptsächlich durch Zellmigration erklärt werden. Die Analysen konzentrierten sich daher auf die Zellmigration, insbesondere auf die zellulären Charakteristika, die sich während der Migration zeigen, wie z.B. Form, Orientierung, Volumen, Verteilung und Filopodienorganisation. So konnten neue Informationen darüber gewonnen werden, wie PSM-Zellen wandern und zur Somitenbildung beitragen. Die Nettobewegung der Schwanzverlängerung ist, unabhängig von nach anterior wandernden PSM-Zellen, nach posterior gerichtet. Das ist nur möglich, wenn einer lateralen Ausdehnung des PSM durch ungerichtet migrierenden Zellen entgegengewirkt wird. Über die Rolle einer laterale Begrenzung bei diesem Prozess gibt es bisher keine Untersuchungen. Beim Axolotl ist das PSM seitlich von einer zweischichtigen Epidermis und einer Fibronektin-reichen extrazellulären Matrix bedeckt. Nach Entfernung der Schwanzepidermis zeigten operierte Embryonen fehlende oder missgebildete Schwänze, insbesondere mit einer lateralen und dorsalen Krümmung und einer Verkürzung. Untersuchungen des Schwanzmesoderms zeigten ein erhöhtes PSM-Volumen und eine laterale Ausdehnung des Gewebes. Ein nahezu normaler Schwanz entwickelte sich, wenn die Embryonen nach Entfernung der Epidermis mit 1% Agarose, ergänzt mit Fibronektin, bedeckt wurden. Im Gegensatz dazu konnte eine einfache Abdeckung des PSM mit einer Nitrozellulosemembran, die Inkubation in der weicheren Methylzellulose oder in Agarose ohne Fibronektin die Schwanzbildung nicht normalisieren. Der seitliche Druck auf das PSM und eine Fibronektin-reiche extrazelluläre Matrix scheinen notwendig zu sein, um die Gewebearchitektur des PSM während der Schwanzbildung zu erhalten. Diese Studie zeigt das Verhalten einzelner PSM-Zellen während der Morphogenese der hinteren Neuralplatte bis zur Somitenbildung. Insgesamt konnte durch die spezifische Markierung von mesodermalen Zellen des Schwanzes deren Beitrag zur PSM-Morphologie aufgeklärt und ein detaillierteres Modell der Schwanzverlängerung vorgeschlagen werden: Die posteriore Ausdehnung des Neuralrohrs und des Notochords schiebt das posteriore Neuralplattengewebe nach hinten und quetscht die Zellen in eine verlängerte, mediolateral orientierte Form. Markierungsexperimente einzelner Zellgruppen zeigten, dass die ventralen, posterior gelegenen Zellen diesem Druck als erste entkommen, indem sie sich nach anterior verschieben. Ihnen folgen weiter anterior gelegene Zellen sowie dorsal gelegene Zellen. Diese Bewegungen erklären die anteriore Drehung. Dabei beginnen mesodermale Zellen ungerichtet zu wandern, verlängern sich und ändern ihre Orientierung von mediolateral nach anterior-posterior. Die ungerichtete Zellwanderung führt zu einer homogenen Zelldurchmischung, so dass zusammen mit dem PSM des Rumpfes ein einheitliches Gewebe gebildet wird. Die laterale Begrenzung durch die Epidermis kanalisiert die ungerichteten Migrationsbewegungen in anteriore Richtung. Auf diese Weise werden die Zellen in Richtung der Somitenbildungsstelle gelenkt, das PSM verengt sich, und der Embryo streckt sich nach hinten. Dieses Ausdehnungsmodell beinhaltet das individuelle Zellverhalten, das insgesamt die Morphologie des PSM prägt. Die analysierten dynamischen morphologischen Veränderungen des PSM können mit Schwanzentwicklungsprozessen und der posterioren Elongation der Achse in Verbindung gebracht werden.:1 Introduction 1.1 Embryonic tail formation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Mechanism of tail formation . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Molecular determination of cell populations in the tail bud . . . . . 5 1.2 Axial elongation of the vertebrate body plan . . . . . . . . . . . . . . . . . 8 1.2.1 Anterior body elongation (elongation of the trunk) . . . . . . . . . 8 1.2.2 Posterior body elongation (tail elongation) . . . . . . . . . . . . . . 9 1.3 Studying tissue morphology during development . . . . . . . . . . . . 11 1.4 Aim of the project . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 12 2 Materials 2.1 Chemicals and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Antibodies and dyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Techniqual equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Methods 3.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Breeding of axolotls and embryo collection . . . . . . . . . . . . 19 3.1.2 Injections with the vital dye DiI . . . . . . . . . . . . . . . . . . . 19 3.1.3 Tissue transplantation techniques . . . . . . . . . . . . . . . . . . . 19 3.2 Immunohistochemical staining . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Vibratome sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Whole-mount staining . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Optical tissue clearing protocols . . . . . . . . . . . . . . . . . . 21 3.3.1 Ethyl cinnamate based optical tissue clearing protocol . . . . . . . 21 3.3.2 SeeDB optical clearing protocol . . . . . . . . . . . . . . . . . . . . 22 3.4 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.1 3D image generation and processing . . . . . . . . . . .. . . . . . 22 3.4.2 Length measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.3 Manual segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.4 Automatic segmentation . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Determination of cellular parameters . . . . . . . . . . . . . . .. . . . . 25 3.5.1 Cell shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.2 Cell and tissue volume . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.3 Cellular distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.4 Closest neighbour analysis . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.5 Cell orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5.6 Length and orientation of filopodia . . . . . . . . . . . . . . . . . . 31 3.5.7 Distance of cells to a plane . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.8 Mitotic rate and spindle orientation . . . . . . . . . . . . . . . . . 32 4 Results 4.1 The presomitic mesoderm is associated with axial elongation. . . . . . 33 4.1.1 Elongation of the body axis . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 Contribution of different tissues . . . . . . . . . . . . . . . . . . . . 34 4.1.3 Differential contribution of mesoderm and epidermis . . . . . . . . . 40 4.1.4 Dual potential of mesodermal progenitors . . . . . . . . . . . . . . . 42 4.1.5 Mesodermal tissue expansion . . . . . . . . . . . . . . . . . . . . . 46 4.2 Cellular behaviour influences mesodermal morphology . . . . . . . . . 50 4.2.1 Cell division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2 Positional changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 Cellular characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 59 Cell shape changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Change of cell orientation . . . . . . . . . . . . . . . . . . . . . . . 61 Orientation of filopodia . . . . . . . . . . . . . . . . . . . . . . . . . 63 Cell distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 The epidermis fascilitates mesodermal tissue integrity . . . . . . .. . . . 67 4.3.1 Mesodermal tissue integrity . . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 Malformed tails after epidermis removal . . . . . . . . . . . . . . . 70 4.3.3 Alteration in mesodermal tissue dimensions . . . . . . . . . . . . . 73 4.3.4 Alteration of cell density after epidermis removal . . . . . . . . . . 77 4.3.5 Rescue of tail formation . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Discussion 5.1 Cell migration of the presomitic mesodermal cells . . . . . . . . .. . . . 85 5.1.1 Continuity of gastrulation movements . . . . . . . . . . . . . . . . . 85 5.1.2 Directed migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.3 Random cell migration . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.4 Lateral mechanical constriction . . . . . . . . . . . . . . . . . . . . 90 5.2 Non-volumetric growth of the presomitic mesoderm . . . . . . . . . . . . . 91 5.3 Models of tail presomitic mesoderm formation . . . . . . . . . . . . . . . . 93
213

Estimation of Technical Efficiency in Stochastic Frontier Analysis

Nguyen, Ngoc B. 03 August 2010 (has links)
No description available.
214

Seed Dispersal of the Forest Herb <i>Podophyllum peltatum</i> by Multiple Vectors

Niederhauser, Eric C. 17 September 2015 (has links)
No description available.
215

Aircraft Thermal Management using Liquefied Natural Gas

Nuzum, Sean Robert 17 May 2016 (has links)
No description available.
216

Latency Tradeoffs in Distributed Storage Access

Ray, Madhurima January 2019 (has links)
The performance of storage systems is central to handling the huge amount of data being generated from a variety of sources including scientific experiments, social media, crowdsourcing, and from an increasing variety of cyber-physical systems. The emerging high-speed storage technologies enable the ingestion of and access to such large volumes of data efficiently. However, the combination of high data volume requirements of new applications that largely generate unstructured and semistructured streams of data combined with the emerging high-speed storage technologies pose a number of new challenges, including the low latency handling of such data and ensuring that the network providing access to the data does not become the bottleneck. The traditional relational model is not well suited for efficiently storing and retrieving unstructured and semi-structured data. An alternate mechanism, popularly known as Key-Value Store (KVS) has been investigated over the last decade to handle such data. A KVS store only needs a 'key' to uniquely identify the data record, which may be of variable length and may or may not have further structure in the form of predefined fields. Most of the KVS in existence have been designed for hard-disk based storage (before the SSDs gain popularity) where avoiding random accesses is crucial for good performance. Unfortunately, as the modern solid-state drives become the norm as the data center storage, the HDD-based KV structures result in high read, write, and space amplifications which becomes detrimental to both the SSD’s performance and endurance. Also note that regardless of how the storage systems are deployed, access to large amounts of storage by many nodes must necessarily go over the network. At the same time, the emerging storage technologies such as Flash, 3D-crosspoint, phase change memory (PCM), etc. coupled with highly efficient access protocols such as NVMe are capable of ingesting and reading data at rates that challenge even the leading edge networking technologies such as 100Gb/sec Ethernet. At the same time, some of the higher-end storage technologies (e.g., Intel Optane storage based on 3-D crosspoint technology, PCM, etc.) coupled with lean protocols like NVMe are capable of providing storage access latencies in the 10-20$\mu s$ range, which means that the additional latency due to network congestion could become significant. The purpose of this thesis is to addresses some of the aforementioned issues. We propose a new hash-based and SSD-friendly key-value store (KVS) architecture called FlashKey which is especially designed for SSDs to provide low access latencies, low read and write amplification, and the ability to easily trade-off latencies for any sequential access, for example, range queries. Through detailed experimental evaluation of FlashKey against the two most popular KVs, namely, RocksDB and LevelDB, we demonstrate that even as an initial implementation we are able to achieve substantially better write amplification, average, and tail latency at a similar or better space amplification. Next, we try to deal with network congestion by dynamically replicating the data items that are heavily used. The tradeoff here is between the latency and the replication or migration overhead. It is important to reverse the replication or migration as the congestion fades away since our observation tells that placing data and applications (that access the data) together in a consolidated fashion would significantly reduce the propagation delay and increase the network energy-saving opportunities which is required as the data center network nowadays are equipped with high-speed and power-hungry network infrastructures. Finally, we designed a tradeoff between network consolidation and congestion. Here, we have traded off the latency to save power. During the quiet hours, we consolidate the traffic is fewer links and use different sleep modes for the unused links to save powers. However, as the traffic increases, we reactively start to spread out traffic to avoid congestion due to the upcoming traffic surge. There are numerous studies in the area of network energy management that uses similar approaches, however, most of them do energy management at a coarser time granularity (e.g. 24 hours or beyond). As opposed to that, our mechanism tries to steal all the small to medium time gaps in traffic and invoke network energy management without causing a significant increase in latency. / Computer and Information Science
217

A Comparison Study on Head/tail Breaks and Topfer’s Method for Model-based Map Generalization on Geographic Features in Country and City Levels

Lin, Yue January 2015 (has links)
Map generalization is a traditional cartographical issue which should be particularly considered in today’sinformation age. The aim of this study is to find some characteristics about head/tail breaks which worksas generalization method compared with the well known Topfer’s method. A questionnaire survey wasconducted to let 30 users choose either of the series maps of both methods and the reason(s) for thatchoice. Also to test their understanding of the series maps histograms were added for them to match.Afterwards the sample results were analyzed using both univariate and bivariate analysis approaches. Itshows that the head/tail breaks method was selected by 58%, compared with 38.7% of Topfer’s method,because of its simplicity. By checking the correctness of histogram question it also shows that those whowell understood answers choose the head/tail breaks rather than the Topfer’s method. However in somecases, where the amount of geographical features is relatively small, Topfer’s method is more selectedbecause of its informative characteristic and similar structure to the original map. It was also found that inthe comparison the head/tail breaks is more advantageous in line feature type generalization than in arealfeature type. This is probably because Topfer’s method changes its minority selection rule to half selectionin line feature type, whereas the head/tail breaks keeps the scaling property. Any difference between thetwo tested scales, Finland level and Helsinki level, is not found in this comparison study. However, futurework should explore more regarding this and other issues.
218

The Effects of Environmental Enrichment on Stress-Induced Eating Disturbances in Rats

Chu, Jennifer January 2008 (has links)
Eating disorders are serious psychological disorders associated with debilitating lifestyle, multiple health problems and high rates of suicidality and mortality. Despite extensive research, the aetiology of eating disorders still remains unclear. Amongst the identified risk factors for eating disorders, stress has been frequently studied. The purpose of the present study was to explore the possibility that tail-pinch administered to rats could provide an animal model of stress-induced eating disturbances in humans, and whether environmental enrichment might ameliorate the effects of stress. In Experiment 1, we compared eating behaviours of rats that were reared in either enriched or standard environments and later exposed to tail-pinch and allowed to eat when food deprived. The study showed that a single exposure to tail-pinch induced eating disturbances in most of the rats. When rats were not food deprived, but were conditioned to eating when placed in test chamber, tail-pinch suppressed eating in all rats, but significantly more for rats reared under standard than in enriched conditions. Experiment 2 used a between-subjects design in which rats were reared in either a standard or enriched environment, and were either exposed to tail-pinch or not exposed during sessions in which they were not food deprived and allowed to eat. Tail-pinch suppressed the food intake of rats reared in enriched but not standard environments. Although this finding appeared to contradict results of Experiment 1, analysis of body weight revealed that exposure to tail pinch suppressed increases in weight gain across sessions more for rats reared in standard than enriched environments. The suppression of food intake during test sessions for enriched but not standard rats exposed to tail-pinch was attributed to differences in contextual conditioning and discrimination of the test chamber from home cages. Overall, results of the present study suggest that rats reared in enriched environments were more resilient to the effects of tail-pinch as a stressor. Implications of these findings for the understanding of human eating disorders are discussed.
219

Deploying Monitoring Trails for Fault Localization in All-optical Networks and Radio-over-Fiber Passive Optical Networks

Maamoun, Khaled M. 24 August 2012 (has links)
Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman’s Problem (CPP) solution and an adapted version of the Traveling Salesman’s Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.
220

Cysteine residues of the mammalian GET receptor: Essential for tail-anchored protein insertion?

Schaefer, Moritz 30 May 2017 (has links)
No description available.

Page generated in 0.0595 seconds