Spelling suggestions: "subject:"E. coal"" "subject:"E. col""
231 |
Proximity and Thickness Estimation of Aluminum 3003 Alloy Metal Sheets Using Multi-Frequency Eddy Current SensorKamanalu, Sunil S. 28 October 2010 (has links)
No description available.
|
232 |
A Study of Sensitivity Mapping Techniques for Multi-Channel MR CoilsDalveren, Taylan 19 September 2013 (has links)
No description available.
|
233 |
The Electromagnetic Simulation of Birdcage Coils for MRI based on Finite Element MethodTadesse, Yonatan Abebe January 2016 (has links)
No description available.
|
234 |
Evaluation of T-cell and B-cell epitopes and design of multivalent vaccines against HTLV-1 diseasesSundaram, Roshni 06 August 2003 (has links)
No description available.
|
235 |
NEGATIVE DIELECTRIC CONSTANT OF PHOTO-CONDUCTING POLYMERS UPON CORONA-CHARGINGYan, Han 04 1900 (has links)
<p>The phenomenon of image blurring on laser-printed or electro-photocopied paper has been discovered since the 1980s. In the 1990s, the problem was confirmed to be associated with the undesired surface conduction along the unique photoconductive polymer surface during the photoconduction process. Other than this, little progress has been made in investigating this phenomenon, due to the limited experimental techniques.</p> <p>In this thesis, the electrical properties of a commercially available photoconductor as a result of Corona charging were studied. Various techniques including vacuum deposition and step-function impedance spectroscopy were employed, to overcome the nature of the photoconductor that prevented the use of conventional techniques such as AC impedance spectroscopy. Negative dielectric constant (NDC) has been prevalently discovered at a broad range of frequencies (below 1Hz and up to 1 MHz) and it was questioned in the form of a physically-impossible inductor. This precipitous sign switch of dielectric constant is found in various areas ranging from physics, chemistry, biology to electronics. The magnitude of the NDC decreased drastically with the decrease of electric field frequency. The system obeyed the proposed free-carrier plasma model with a resonance frequency at MHz level.</p> <p>Commercially available polymeric photoconducting materials showing NDC at extremely low frequency are expected to provide unusual scattering to electromagnetic waves and therefore demonstrate profound implications with reduced cost. It has paved the way for many applications such as inductors in integrated chips without bulky coils and provides an insight into a possible revolution in electronics and photonics.</p> / Doctor of Philosophy (PhD)
|
236 |
Economic and Environmental Analysis of Cool Thermal Energy Storage as an Alternative to Batteries for the Integration of Intermittent Renewable Energy SourcesAnderson, Matthew John 17 January 2015 (has links)
The balance of the supply of renewable energy sources with electricity demand will become increasingly difficult with further penetration of renewable energy sources. Traditionally, large stationary batteries have been used to store renewable energy in excess of electricity demand and dispatch the stored energy to meet future electricity demand. Cool thermal energy storage is a feasible renewable energy balancing solution that has economic and environmental advantages over utility scale stationary lead-acid batteries. Two technologies, ice harvesters and internal-melt ice-on-coil cool thermal energy storage, have the capability to store excess renewable energy and use the energy to displace electricity used for building cooling systems. When implemented by a utility, cool thermal energy storage can replace large utility scale batteries for renewable energy balancing in utility regions with high renewable energy penetration. The California Independent System Operator (CAISO) region and the Electric Reliability Council of Texas (ERCOT) are utility regions with large solar and wind resources, respectively, that can benefit from installation of cool thermal energy storage systems for renewable energy balancing. With proper scheduling of energy dispatched from cool thermal energy storage, these technologies can be effective in displacing peak power capacity for the region, in displacing traditional building cooling equipment, and in recovering renewable energy that would otherwise be curtailed. / Master of Science
|
237 |
Context Dependence of Non-Covalent Interactions Among Amino-Acid Side Chains Along the Solvent-Exposed Surface of Coiled CoilsStern, Kimberlee Larsen 22 June 2023 (has links) (PDF)
Coiled coils are a well-known protein structure prevalent in eukaryotic function, synthetic applications, and de novo protein design. Coiled-coil folding is often described using heptad repeat positions labeled abcdefg where a and d positions occupy the interface between the coils, e and g positions flank the interface, and the b, c, and f positions face the solvent-exposed surface. The a, d, e, and g positions have been extensively studied in the coiled-coil literature. There is a lack of investigation on the impact of the b, c, and f positions on coiled-coil folding. Chapter 1 is an introduction to the heptad repeat of coiled coils and the impact on folding of each heptad repeat position. In Chapter 2 we introduce a non-covalent interaction among the b, c, and f positions of a coiled-coil trimer that significantly enhances thermodynamic stability. We identify characteristics of the f-position residue (hydrogen bond donating ability and hydrophobicity) that lead to the greatest amount of stability. Chapter 3 introduces crystal structures and molecular dynamic simulations of the interaction to identify the mechanism of stabilization. Further thermodynamic studies find a key salt-bridge interaction between the b and c positions that are influenced by the f-position residue. Chapter 4 explores the impact of salt on the non-covalent interaction and determines that the interaction is sensitive to salt screening and is ionic in nature. It also explores more characteristics of the f-position amino acid, in particular the hydrogen bond donating component. In Chapter 5 we insert the solvent-exposed interaction into helix bundles of differing length and oligomeric state. We find that stability is not only dependent upon amino acid identity but also the length and stoichiometry of a coiled coil.
|
238 |
Coiled-coil domain-containing protein 69 (CCDC69) acts as a scaffold and a microtubule-destabilizing factor to regulate central spindle assemblyPal, Debjani January 1900 (has links)
Master of Science / Department of Biochemistry / Qize Wei / Proper regulation of mitosis and cytokinesis is fundamentally important for all living
organisms. During anaphase, antiparallel microtubules are bundled between the separating chromosomes, forming the central spindle (also called the spindle midzone), and the myosin contractile ring is assembled at the equatorial cortex. Regulators of central spindle formation and myosin contractile ring assembly are mostly restricted to the interdigitated microtubules of central spindles and they can be collectively called midzone components. It is thought that characteristic microtubule configurations during mitosis and cytokinesis are dictated by the coordinated action of microtubule-stabilizing and -destabilizing factors. Although extensive investigations have focused on understanding the roles of microtubule-bundling/stabilizing factors in controlling central spindle formation, efforts have been lacking in aiming to understand how microtubule-destabilizing factors regulate the assembly of central spindles. This dissertation describes the role of a novel microtubule-destabilizing factor termed CCDC69 (coiled-coil domain-containing protein 69) in controlling the assembly of central spindles and the recruitment of midzone components. Endogenous CCDC69 was localized to the
nucleus during interphase and to the central spindle during anaphase. Exogenous expression of CCDC69 in HeLa cells destabilized microtubules and disrupted the formation of bipolar mitotic spindles. RNA interference (RNAi)-mediated knockdown of CCDC69 led to the formation of aberrant central spindles and interfered with the localization of midzone components such as
aurora B kinase, protein regulator of cytokinesis 1 (PRC1), MgcRacGAP/HsCYK-4, and pololike kinase 1 (Plk1) at the central spindle. CCDC69 knockdown also decreased equatorial RhoA staining, indicating that CCDC69 deficiency can impair equatorial RhoA activation and ultimately lead to cytokinesis defects. Four coiled-coil domains were found in CCDC69 and the
C terminal coiled-coil domain was required for interaction with aurora B. Disruption of aurora B function in HeLa cells by treatment with a small chemical inhibitor led to the mislocalization of CCDC69 at the central spindle. Further, vitro kinase assay showed that Plk1 could phosphorylate CCDC69. Taken together, we propose that CCDC69 acts as a scaffold and a microtubule-destabilizing
factor to control the recruitment of midzone components and the assembly of central spindles.
|
239 |
Modeling and validation of a syntactic foam lining for noise control devices for fluid power systemsEarnhart, Nicholas Edmond 13 November 2012 (has links)
Excessive fluid-borne noise in hydraulic systems is a problem the fluid power industry has long struggled to address. Traditional noise control devices such as Helmholtz resonators, tuning coils, and Herschel-Quincke tubes are generally too large for fluid power systems unless the speed of sound in the device can be reduced. A compliant lining can achieve this effect, but compliance (and lossy compliance) has had little attention in noise control in general, and in fluid power in particular. One means to achieve compliance in these devices, especially at elevated pressures, is through a liner made of syntactic foam, which in this case is a urethane host matrix with embedded hollow, polymer microspheres. The material properties at elevated pressure are unknown by the liner manufacturer, but are known to be pressure- and temperature-dependent. Therefore, the effect of hydrostatic pressures from 2.1-21 MPa and temperatures from 20-45 C on the liner properties, thus the device performance, are studied. For a Helmholtz resonator, a theoretical model is fit to experimentally-measured transmission loss of the device using a least-squares routine, which solves the inverse problem for the complex bulk modulus of the liner. These material properties are used to compare a predictive model of a tuning coil to experimental data, and in a parameter study of a Herschel-Quincke tube. The compliance of the liner is found to lower the effective sound speed by an order of magnitude and decrease the volume of the cavity of a Helmholtz resonator by up to two orders of magnitude. This work is expected to result is more compact noise control devices for fluid power systems.
|
240 |
Active and Passive Vibration Isolation and Damping via Shunted Transducersde Marneffe, Bruno 14 December 2007 (has links)
<p align="justify">Many different active control techniques can be used to control the vibrations of a mechanical structure: they however require at least a sensitive signal amplifier (for the sensor), a power amplifier (for the actuator) and an analog or digital filter (for the controller). The use of all these electronic devices may be impractical in many applications and has motivated the use of the so-called shunt circuits, in which an electrical circuit is directly connected to a transducer embedded in the structure. The transducer acts as an energy converter: it transforms mechanical (vibrational) energy into electrical energy, which is in turn dissipated in the shunt circuit. No separate sensor is required, and only one, generally simple electronic circuit is used. The stability of the shunted structure is guaranteed if the electric circuit is passive, i.e., if it is made of passive components such as resistors and inductors.</p>
<p align="justify">This thesis compares the performances of the electric shunt circuits with those of classical active control systems. It successively considers the use of piezoelectric transducers and that of electromagnetic (moving-coil) transducers.</p>
<p align="justify">In a first part, the different damping techniques are applied on a benchmark truss structure equipped with a piezoelectric stack transducer. A unified formulation is found and experimentally verified for an active control law, the Integral Force Feedback (IFF), and for various passive shunt circuits (resistive and resistive-inductive). The use of an active shunt, namely the negative capacitance, is also investigated in detail. Two different implementations are discussed: they are shown to have very different stability limits and performances.</p>
<p align="justify">In a second part, vibration isolation with electromagnetic (moving-coil) transducers is introduced. The effects of an inductive-resistive shunt circuit are studied in detail; an equivalent mechanical representation is found. The performances are compared with that of resonant shunts and with that of active isolation with IFF. Next, the construction of a six-axis isolator based on a Stewart Platform is presented: the key parameters and the main limitations of the system are highlighted.</p>
|
Page generated in 0.0542 seconds