• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 22
  • 19
  • 12
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 140
  • 82
  • 53
  • 23
  • 18
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Interactions moléculaires et cellulaires entre les protéines E3-14.7K, FIP-1 et les microtubules : application dans le transfert de gènes

Pigeon, Lucie 21 December 2012 (has links) (PDF)
L'objectif de la thérapie génique est de guérir des déficiences génétiques et de nombreuses maladies acquises par l'introduction d'acides nucléiques dans les cellules mammifères. Les vecteurs chimiques sont une alternative aux vecteurs viraux pour le transfert de gène, leur immunogénicité est réduite, en plus de leur faible coût et de la facilité de leur production. Jusqu'à présent, les liposomes et les polymères cationiques sont les vecteurs chimiques les plus étudiés et utilisés pour le transfert d'ADN plasmidique (ADNp) thérapeutique. Parmi les multiples barrières biologiques, la diffusion cytosolique limitée de l'ADNp est critique pour le niveau d'expression du transgène. Le but de ce travail de thèse était d'identifier un peptide de liaison à la dynéine, qui serait capable de recruter la protéine motrice dynéine et de faciliter le transport d'ADNp vers le noyau le long des microtubules. Nous avons donc étudié le réseau d'interaction de la protéine adénovirale E3-14.7K. E3-14.7K est indirectement en interaction avec la chaîne légère de la dynéine TCTEL1 par l'intermédiaire de FIP-1. Différentes techniques ont été utilisées pour analyser les interactions de ces différentes protéines telles que Bioluminescence Resonance Energy Transfer (BRET), Förster Resonance Energy Transfer (FRET), Fluorescence Lifetime Imaging (FLIM), immunoprécipitation et Laser Scanning Confocal Microscopy (LSCM). La technique de BRET nous a permis d'identifier un peptide de 20 acides aminés d'E3-14.7K (P79-98) responsable de son interaction avec FIP-1. Associé à des Quantum Dots P79-98 (P79-98-Qdot) colocalise avec les microtubules isolés et dans les cellules HeLa. Nous avons mis au point une méthode de greffage du peptide directement sur l'ADNp. Une fois greffé avec P79-98 l'ADNp est capable d'interagir avec les microtubules dans les cellules HeLa et de migrer activement jusqu'au noyau. P79-98 améliore l'efficacité de la transfection des HeLa jusqu'à 77%.
102

Cultivo de Landoltia punctata na remoção de desreguladores endócrinos e no polimento de esgoto sanitário em lagoa com recirculação /

Zanetoni Filho, José Antônio. January 2019 (has links)
Orientador: Liliane Lazzari Albertin / Resumo: A situação de escassez de recursos financeiros destinados ao tratamento e coleta de esgotos municipais, no Brasil, torna essencial a busca por tecnologias de tratamento que priorizem baixos custos de instalação e operação. Além da negligência que existe no tratamento de esgotos, os métodos utilizados, muitas vezes, não são capazes de remover os micropoluentes que estão presentes nos esgotos domésticos. Os micropoluentes podem ser desde fármacos, que são expelidos na urina ou descartados de maneira inadequada, a hormônios naturais ou sintéticos. Esse trabalho consistiu em realizar um processo de polimento do esgoto sanitário da cidade de Ilha Solteira – SP. O sistema de polimento é constituído por dois tanques, onde foi cultivada a macrófita Landoltia punctata. Foi também avaliado e feito a recirculação do efluente, no tratamento de esgoto. Neste sistema de polimento, foram avaliadas as eficiências de tratamento para os parâmetros de DBO, DQO, NT, NO3-, PT e ST. As maiores eficiências de remoção para DBO, DQO, NT, NO3-, PT e ST foram de 66,35%, 59,08%, 26,76%, 28,38%, 6,85% e 40,08%. Outro aspecto avaliado foi a taxa de crescimento da macrófita cultivada em esgoto sanitário. As maiores taxas de crescimento relativo foram de 3,84 e 3,17 g.m-2.d-1 MS. Considerando a presença de desreguladores endócrinos (DEs) no efluente da Estação de Tratamento de Esgoto (ETE) de Ilha Solteira, foi analisado a absorção dos estrógenos 17α-etinilestradiol (EE2) e o estriol (E3) pela macrófita, av... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The scarcity of financial resources for the treatment and collection of municipal wastewater in Brazil makes search for treatment technologies essential with low installation and operation costs. In addition, the methods used are often not able to remove the micropollutants that are present in domestic sewage. Micropollutants can range from drugs that are expelled in the urine or inappropriately discarded to natural or synthetic hormones. This work consisted of a process to polishing the sanitary sewage of the city of Ilha Solteira - SP. The treatment system consists of two tanks, where the macrophyte Landoltia punctata was grown. In one of the tanks, a recirculation system was performed. In this polishing system, the treatment efficiencies for the BOD, COD, TN, NO3-, TP and ST parameters were evaluated. The highest removal efficiencies for BOD, COD, TN, NO3-, TP and ST were 66,35%, 59,08%, 26,76%, 28,38%, 6,85% and 40,08%. Another aspect evaluated was the growth rate of the macrophyte. The highest relative growth rates were 3.84 and 3.17 g.m-2.d-1 MS. Considering the presence of endocrine disrupters (DEs) in the effluent from the Sewage Treatment Plant (ETE) in Ilha Solteira - SP, 17α-ethinyl estradiol (EE2) and estriol (E3) were analyzed on the plant to evaluate possible risks on the reuse of the biomass. The maximum achieved efficiencies for removal of E3 and EE2 were 83.63% and 83.50%, respectively. The recirculation tank was more effective at removing E3, while the non-r... (Complete abstract click electronic access below) / Mestre
103

Development of a new screening system for the identification of RNF43-related genes and characterisation of other PA-RING family members

Merenda, Alessandra January 2017 (has links)
The E3 ubiquitin ligase RNF43 (RING finger protein 43) is an important negative modulator of the WNT signalling pathway that acts at the plasma membrane by targeting Frizzled and its co-receptor LRP for degradation. In the small intestine, this prevents uncontrolled expansion of the stem cell compartment and so it is essential to the maintenance of normal tissue homeostasis. However, despite its crucial role in fine-tuning the WNT pathway and its role as a tumour suppressor, it is unclear whether RNF43 has further binding partners and what their functional relevance is to the modulation of WNT signalling. Here, I describe the development of a new screening strategy which combines CRISPR/Cas9 technology with 3D-intestinal organoid culture for the identification of novel molecular interactors of RNF43. Overall, this study and the technology developed provide a tool to enable the detailed description of the mechanism of action of RNF43, which is important not only in order to increase our understanding of WNT pathway regulation but also to gain potential new insights into RNF43 paralogs, by analogy. The investigation of paralogs is crucial as RNF43 belongs to a newly identified family of E3 ubiquitin ligases, named the PA-RING family, whose members are still poorly characterised. The majority of PA-RING family members have not been linked to any signalling pathway, most of their targets are still unknown and in many cases their in vivo function has not been addressed. In this context, my work has specifically focused on the investigation of the potential involvement of additional PA-RING family members in WNT pathway modulation and also on target identification for selected members. The results summarised in this dissertation show that no other PA-RING family member plays a prominent role in WNT pathway modulation aside from Rnf43 and its homologue Znrf3, however, different classes of adhesion molecules are likely to be regulated by certain of these E3 ligases. In conclusion, my work has contributed to unravelling previously unexplored aspects of this protein family, with particular regard to RNF43 and its mechanism of action. Thanks to this original approach, it was possible to identify potential new players involved either in membrane clearance of Frizzled or in RNF43 maturation. In particular, my thesis focuses on the characterisation of the role of DAAM in RNF43-mediated Frizzled internalisation.
104

Regulation of the innate immune system

McGlasson, Sarah Louise January 2015 (has links)
The innate immune system is the first line of defence against pathogen invasion. The range of diseases that are caused by deficiencies in or deregulation of the innate immune system illustrates the importance of maintaining an effective balance between clearance of infectious agents and minimisation of inflammatory mediated tissue damage. This thesis explores the role of two proteins in the regulation of the innate immune system. Primarily, this work investigates the effect of human β-defensin 3 (hBD3) on the response to self-DNA and pathogenic DNA. HBD3 is an antimicrobial peptide (AMP), which has been shown to have a role in regulating the immune response; increased copy number of the region containing the gene for hBD3, DEFB103, is linked to an increased risk of psoriasis. Additionally, a similar cationic AMP, LL37, has been shown to exacerbate the pathogenesis of psoriasis by forming an immunogenic complex with self-DNA. This lead to the hypothesis that hBD3 may also affect the innate immune response to DNA. Therefore this project investigates what effect hBD3 has on the response of the innate immune system to self and pathogenic DNA. Flt-3 dendritic cells were used to show that whilst hBD3 increased cellular uptake of self-DNA, it did not convert self-DNA into an immune stimulus. However, hBD3 significantly exacerbated the response to bacterial DNA in a TLR9-dependent manner, also by increasing cellular uptake into FLDCs. The finding that hBD3 increased cellular uptake of both self- and pathogenic DNA suggests that at sites of infection or increased cell death, where DNA would be found in the extracellular environment, hBD3 may increase uptake into immune cells and could induce an increased immune response. Since increased hBD3 expression is induced by inflammatory stimuli, this process would cause a positive feedback loop of inflammation during bacterial infections. In conclusion, hBD3’s role in regulating the innate immune response to DNA is at the ligand-receptor level rather than affecting signalling pathways. Furthermore, hBD3 promotes the innate immune response to bacterial DNA by increasing the efficiency of cellular uptake possibly by inducing DNA aggregation. These results implicate a possible role for hBD3 in the earliest stages of psoriatic plaque development, which is often initiated or exacerbated by an infection, and this could be investigated further. Secondly, I investigated the innate immune function of an E3 ubiquitin ligase (E3L) not previously associated with human disease. Mutations in E3L have been identified in three microcephalic primordial dwarfism families; these patients also presented with recurrent respiratory illnesses. E3L has been implicated in the regulation of the innate immune system via interactions with signalling pathways downstream of the receptor, though its role is not clear. We hypothesised that E3L had a dual role both in regulating growth and cell division and in regulating the immune system. Primary patient fibroblasts did not demonstrate an altered cytokine response to bacterial or viral ligands, implying that E3L may have a specific function in immune cells. To investigate this further, and to provide a system to study E3L in vivo, two transgenic mouse lines were designed and engineered, firstly a conditional ‘knock-out’ designed to replicate some of the alternative isoforms of E3L seen in RT-PCRs, and secondly a ‘knock-in’ line to recapitulate the human mutation in exon 7 of E3L, R185X. These mouse lines should offer an insight into the developmental role for E3L, and contribute to establishing a potential role for E3L in the innate immune system. This thesis exemplifies the complexity of the innate immune system and the regulatory pathways that interact to maintain a delicate homeostasis preventing pathogenic inflammation. Understanding these regulatory mechanisms may shed light on the pathogenicity of diseases and identification of potential targets for therapeutics.
105

Do profits affect investment and employment? An empirical test based on the Bhaduri-Marglin model.

Onaran, Özlem, Stockhammer, Engelbert January 2005 (has links) (PDF)
In this study, a Kaleckian-Post-Keynesian macroeconomic model, which is an extended version of the Bhaduri and Marglin (1990) model, serves as the starting point. The merit of a Kaleckian model for our purposes is that it highlights the dual function of wages as a component of aggregate demand as well as a cost item as opposed to the mainstream economics, which perceive wages merely as a cost item. Depending on the relative magnitude of these two effects, Kaleckian models distinguish between profit-led and wage-led regimes, where the latter is defined as a low rate of accumulation being caused by a high profit share. Are actual economies wage-led or profit-led? Current orthodoxy implicitly assumes that they are profit-led, and thus supports the neoliberal policy agenda. The purpose of the paper is to carry this discussion into the empirical terrain, and to test whether accumulation and employment are profit-led in two groups of countries. We do so by means of a structural vector autoregression (VAR) model. The model is estimated for USA, UK and France to represent the major developed countries, and for Turkey and Korea to represent developing countries. The latter are chosen since they represent two different export-oriented growth experiences. The results of the adjustment experiences of both countries are in striking contrast to orthodox theory, however they also present counter-examples to each other in terms of their ways of integrating into the world economy. (author's abstract) / Series: Working Papers Series "Growth and Employment in Europe: Sustainability and Competitiveness"
106

Étude de l'interactôme de l'ubiquitine ligase E3 MARCH1 par essais de proximité par liaison de biotine

Balthazard, Renaud 08 1900 (has links)
Le métabolisme des cellules immunitaires est assujetti à un contrôle étroit. L’inflammation, la présentation antigénique et l’expansion clonale sont des évènements qui demandent un changement rapide dans le métabolisme des cellules. Notamment, la glutamine est grandement sollicitée lors de la maturation des cellules dendritiques, les macrophages et les lymphocytes B et T pour son rôle dans la synthèse des protéines et son implication dans la phosphorylation oxydative. Au repos, les cellules présentatrices d’antigènes (CPAs) expriment l’ubiquitine ligase E3 MARCH1. MARCH1 est une protéine membranaire qui régule la réponse immunitaire en ubiquitinant, entre autres, le complexe majeur d’histocompatibilité II (CMH II) et CD86. Lors de l’activation des cellules immunitaires, son expression est réprimée, ce qui permet l’accumulation du CMH II et de CD86 sur leur membrane. Nous pensons que MARCH1 régule négativement le métabolisme des cellules immunitaires. Parmi les protéines membranaires sous le contrôle de MARCH1 pourraient se trouver des transporteurs de glutamine. La baisse rapide de MARCH1 serait nécessaire pour permettre aux cellules de modifier leur métabolisme en augmentant le transport de la glutamine. Dans le mémoire présent, nous nous sommes intéressés à l’interactôme de MARCH1. Afin de découvrir de nouvelles cibles de MARCH1, nous avons utilisé la méthode du BioID dans des cellules HEK293T. Le BioID est une méthode innovatrice permettant l’identification d’interactions interprotéines. La protéine de fusion BioID2 permet la biotinylation et l’isolation des protéines adjacentes in vivo. Ces essais de proximité nous ont permis d’identifier 41 cibles potentielles de MARCH1. Nous avons analysé l’expression de 13 de ces protéines par cytométrie en flux. Nos résultats démontrent que MARCH1 induit la dégradation de NKCC1, CD147 et SNAT2. L’expression de MARCH1 dans les cellules HEK293T engendre une diminution de SNAT2 en surface. S’il avère que MARCH1 régule le métabolisme de la glutamine dans les cellules immunitaires, il s’agirait alors d’un nouveau mécanisme par lequel cette ubiquitine ligase E3 module la réponse immunitaire. SNAT2 est nécessaire dans l’adaptation des cellules pour leurs besoins en glutamine. Nous discuterons du rôle que joue cette protéine dans l’adaptation du métabolisme et la glutaminolyse. / Immune cell metabolism is subjected to a tight control. Inflammation, antigen presentation and clonal expansion are all events that comes with a rapid change in metabolism. Glutamine is highly solicited during dendritic cells, macrophages and B and T lymphocytes maturation, due to its role in protein synthesis and oxidative phosphorylation. At steady-state, antigen presenting cells express the ubiquitin ligase E3 MARCH1. MARCH1 is a membrane protein involved in the immune response through major histocompatibility II and CD86 ubiquitination and degradation. During their activation, MARCH1 expression is repressed. This allows for accumulation of MHC II and CD86 on the cell surface, but other membrane-bound receptors and transporters are also increased during that time. Among those, proteins involved in glutamine transport are increased and thus help immune cells to adjust their intracellular nutrient pool for their new metabolic needs. We propose that MARCH1 negatively regulates immune cell metabolism through the regulation of nutrient transporters. The rapid stop in the transcription of MARCH1 induces an increase in receptors on the cytoplasmic membrane. Here, we aimed to identify the MARCH1 interactome. In order to identify new MARCH1 targets, we used the BioID proximity assays in HEK293T cells. BioID is an innovative method for the identification of protein interactions. BioID2 protein fusion can be used for in vivo biotinylation and isolation of promiscuous proteins. These proximity assays allowed us to identify 41 potential MARCH1 targets. We analyzed the expression of 13 of these proteins and found that 3 were affected by MARCH1 expression. Our results show that MARCH1 induces the degradation of NKCC1, CD147 and SNAT2. More specifically, MARCH1 expression in HEK293T induces the internalisation of the glutamine transporter SNAT2. If MARCH1 proves to regulate glutamine transport in immune cells, this would be a novel mechanism by which this ubiquitin ligase regulates adaptive immune system. Indeed, SNAT2 is required for the cellular adaption of amino acids during maturation, including glutamine. We will discuss the implications of MARCH1 as a metabolic switch and the role this would have in glutaminolysis and antigen presentation.
107

The Ubiquitin Proteasome System in Ischemic and Dilated Cardiomyopathy

Spänig, Sabine, Kellermann, Kristina, Dieterlen, Maja-Theresa, Noack, Thilo, Lehmann, Sven, Borger, Michael A., Garbade, Jens, Barac, Yaron D., Emrich, Fabian 31 January 2024 (has links)
Dilated (DCM) and ischemic cardiomyopathies (ICM) are associated with cardiac remodeling, where the ubiquitin–proteasome system (UPS) holds a central role. Little is known about the UPS and its alterations in patients suffering from DCM or ICM. The aim of this study is to characterize the UPS activity in human heart tissue from cardiomyopathy patients. Myocardial tissue from ICM (n = 23), DCM (n = 28), and control (n = 14) patients were used to quantify ubiquitinylated proteins, E3-ubiquitin-ligases muscle-atrophy-F-box (MAFbx)/atrogin-1, muscle-RING-finger-1 (MuRF1), and eukaryotic-translation-initiation-factor-4E (eIF4E), by Western blot. Furthermore, the proteasomal chymotrypsin-like and trypsin-like peptidase activities were determined fluorometrically. Enzyme activity of NAD(P)H oxidase was assessed as an index of reactive oxygen species production. The chymotrypsin- (p = 0.71) and caspase-like proteasomal activity (p = 0.93) was similar between the groups. Trypsin-like proteasomal activity was lower in ICM (0.78 ± 0.11 µU/mg) compared to DCM (1.06 ± 0.08 µU/mg) and control (1.00 ± 0.06 µU/mg; p = 0.06) samples. Decreased ubiquitin expression in both cardiomyopathy groups (ICM vs. control: p < 0.001; DCM vs. control: p < 0.001), as well as less ubiquitin-positive deposits in ICM-damaged tissue (ICM: 4.19% ± 0.60%, control: 6.28% ± 0.40%, p = 0.022), were detected. E3-ligase MuRF1 protein expression (p = 0.62), NADPH-oxidase activity (p = 0.63), and AIF-positive cells (p = 0.50). Statistical trends were detected for reduced MAFbx protein expression in the DCM-group (p = 0.07). Different levels of UPS components, E3 ligases, and UPS activation markers were observed in myocardial tissue from patients affected by DCM and ICM, suggesting differential involvement of the UPS in the underlying pathologies.
108

Understanding Host-Pathogen Interactions of Rift Valley Fever Virus That Contribute to Viral Replication

Bracci, Nicole Rose 11 April 2022 (has links)
Rift Valley fever virus (RVFV) is a negative-sense RNA virus that is classified as an overlap select agent by the USDA and the HHS. It was first discovered in the Rift Valley of Kenya in the early 1930s. RVFV is an arbovirus that is transmitted by mosquitoes and infects ruminants and humans. RVFV in humans causes an acute self-limiting febrile illness but in a small percentage of cases, a severe version is noted by ocular disease, hepatitis, hemorrhagic fever, and death. In ruminants, the disease is similar with young livestock being the most susceptible. RVFV is also known to cause "abortion storms" where infected pregnant ruminants abort their fetuses with a near 100% fatality rate. Viruses are obligate intracellular parasites utilizing host-factors to replicate. This study identified three host-protein interactors of the viral Gn and L proteins that aid in viral replication. UBR4 was determined to be an interactor of Gn via immunoprecipitation followed by either LC/MS/MS or western blot analysis. Its inhibition via siRNA or CRISPR-Cas9 knockout showed a reduction of viral titers and viral RNA production. It was determined that UBR4 specifically affects viral RNA production and not entry or egress. Conversely, CK1α and PP1α were identified as binding partners of the L protein using similar methods. CK1α, a kinase, and PP1α, a phosphatase, were chosen for further verification due to data demonstrating the L protein is phosphorylated on at least one serine residue, in addition to PP1α already being shown to impact RVFV replication. Inhibition of CK1 and PP1 via small molecule inhibitors, D4476 and 1E7-03, respectively, showed a decrease in viral titers and RNA production. Strand-specific RT-qPCR demonstrates that CK1 and PP1 impact genomic replication. Upon treatment with D4476 a decrease in L protein phosphorylation was observed. Additionally, it has already been shown that treatment with 1E7-03 increases L protein phosphorylation. These data indicate that CK1 and PP1 modulate L protein phosphorylation, contributing to changes in RVFV replication. This study identifies three host-proteins that affect viral replication, which could be used as a foundation for host-based therapeutic and vaccine development. / Doctor of Philosophy / Rift Valley fever virus (RVFV) is a major biological threat due to its ability to infect both livestock and humans and be passed by mosquito bite. RVFV was first discovered in Africa in the early 1930s. To date, there is no approved therapeutic or vaccine. RVFV usually causes very mild disease but in a small percentage of cases, it progresses to include liver disease, vision loss, swelling of the brain, bleeding, and death. A virus itself is not alive; it needs a living host in order to replicate. To do this, it utilizes things naturally occurring inside the host. The purpose of this study is to identify host-factors that the virus uses in order to efficiently make more viruses. The first viral protein of interest is the glycoprotein, Gn, which is important for viral entry and assembly of the viral particles. It was determined that the host-protein UBR4 is an interactor of Gn and that the inhibition of UBR4 decreases the amount of infectious virus being produced. Similarly, the host-proteins, CK1α and PP1α, were found to be interactors of the viral L protein. The L protein is responsible for synthesizing the building blocks of the virus. It was determined that when CK1 and PP1 are inhibited, the L protein is less efficient at making these building blocks. Understanding the host-factors the virus utilizes is important to the basic understanding of how RVFV infects the host and the development of therapeutics to combat an outbreak.
109

NMR δομικός χαρακτηρισμός του RING τομέα της Ε3 λιγάσης ουβικιτίνης ARKADIA, με τροποποιημένο μοτίβο δέσμευσης ιόντων Ψευδαργύρου, του τύπου Cys3-His-Cys4

Βλάχου, Πολυτίμη-Μαρία 11 October 2013 (has links)
Η αποικοδόμηση των πρωτεϊνών είναι μια διαδικασία απαραίτητη για τη διατήρηση της ομοιόστασης του κυττάρου. Ένας από τους κύριους μηχανισμούς αποικοδόμησης των βραχύβιων πρωτεϊνών καθώς και όσων εμφανίζουν λανθασμένη αναδίπλωση, χωρεί μέσω του μονοπατιού ουβικιτίνης- πρωτεασώματος. Η ουβικιτινίωση είναι μια μετα-μεταφραστική διαδικασία, η οποία έγκειται στη σηματοδότηση των υποψήφιων για αποικοδόμηση πρωτεϊνών με ουβικιτίνη και περιλαμβάνει τρεις ενζυμικές ενεργότητες: Ε1 (εκκινητής ουβικιτίνης), Ε2(μεταφορέας ουβικιτίνης) και Ε3 (λιγάση ουβικιτίνης). Η πρωτεΐνη Arkadia (Rnf11) είναι μια Ε3 λιγάση ουβικιτίνης με συνολικό μήκος 994 αμινοξέα. Σε μοριακό επίπεδο, ενισχύει το TGF-β σηματοδοτικό μονοπάτι, διαμεσολαβώντας την εξαρτώμενη από το πρωτεάσωμα αποικοδόμηση των αρνητικών ρυθμιστών του, c-Ski και Sno-N. Η δραστικότητα Ε3 λιγάσης ουβικιτίνης εδράζεται στον C΄-τελικό RING-H2 τομέα, που σχηματίζεται από τα τελευταία 60 περίπου αμινοξέα της ακολουθίας. Η δομή και η σταθερότητα του RING τομέα εξαρτώνται από την πρόσδεση δύο ιόντων Zn μέσω ενός χαρακτηριστικού μοτίβου, που περιλαμβάνει 6 κυστεϊνικά και 2 ιστιδινικά κατάλοιπα. Στην προσπάθεια αποσαφήνισης της σχέσης δομής-δράσης της πρωτεΐνης Arkadia, ένα από τα κατάλοιπα που συναρμόζονται με Zn -συγκεκριμένα η His965- αντικαταστάθηκε από κυστεΐνη μέσω κατευθυνόμενης μεταλλαξιγένεσης. Η μετάλλαξη αυτή, με την οποία, ουσιαστικά, μετατρέψαμε τον RING-H2 σε RING-HC τομέα, μελετήθηκε με χρήση πολυπυρηνικής/πολυδιάστατης φασματοσκοπίας πυρηνικού μαγνητικού συντονισμού (NMR). H NMR δομή του RING-H2 τομέα της Η965C Arkadia επιλύθηκε σε υψηλή διακριτικότητα (tf=0.94±7.53*10-2, RMSD=0.75±0.20 και RMSD=1.45±0.24 για τα άτομα του πολυπεπτιδικού σκελετού και τα βαρέα άτομα αντίστοιχα) και αποκάλυψε μια ββαββ τοπολογία. Παράλληλα, πραγματοποιήθηκε μελέτη κινητικότητας, από την οποία προέκυψε ότι η εν λόγω μετάλλαξη υφίσταται ως μονομερές και διαθέτει έναν συμπαγή πυρήνα, που περικλείεται μεταξύ δύο ευκίνητων άκρων. / Protein degradation is necessary for the maintenance of cell homeostasis. A major mechanism for the degradation of short-lived as well as misfolded proteins involves the ubiquitin-proteasome pathway. Ubiquitination is a post translational modification, which targets the proteins to be degraded through the covalent attachment of a ubiquitin tag and consists of three enzyme activities: Ε1 (ubiquitin activator), E2 (ubiquitin carrier) and E3 (ubiquitin ligase). Arkadia (Rnf11) is a 994 amino acid protein, which acts as an E3 ubiquitin ligase. On a molecular level, Arkadia enhances TGF-β signaling by mediating the proteasome-dependent degradation of its negative regulators, c-Ski and Sno-N. Its E3 ubiquitin ligase activity lies on a C΄-terminal RING-H2 domain, formed by the last 60 residues. The structure as well as stability of the RING finger domain depend strongly on the binding of two zinc ions in a unique ΄΄cross-brace΄΄ arrangement through a defined motif of six cysteines and two histidines. Trying to elucidate the structure-activity relationship in the case of Arkadia, one of the amino acid ligands –specifically His965- was replaced by cysteine through site-directed mutagenesis. This particular mutation, which, in reality, transformed the RING-H2 to a RING-HC domain, was studied with the use of multinuclear/multidimensional nuclear magnetic resonance spectroscopy (NMR). The NMR solution structure of the H965 Arkadia RING-H2 domain was determined in high resolution (tf=0.94±7.53*10-2, RMSD=0.75±0.20 και RMSD=1.45±0.24 for backbone and heavy atoms respectively) and revealed a ββαββ topology. Furthermore, a mobility study was conducted with the following results: the mutated protein is not expected to form dimers and shows a compact core region including the four metal binding motifs flanked by two flexibly disordered termini.
110

Solid oxide steam electrolysis for high temperature hydrogen production

Eccleston, Kelcey L. January 2007 (has links)
This study has focused on solid oxide electrolyser cells for high temperature steam electrolysis. Solid oxide electrolysis is the reverse operation of solid oxide fuel cells (SOFC), so many of the same component materials may be used. However, other electrode materials are of interest to improve performance and efficiency. In this work anode materials were investigated for use in solid oxide electrolysers. Perovskite materials of the form L₁₋xSrxMO₃ , where M is Mn, Co, or Fe. LSM is a well understood electrode material for the SOFC. Under electrolysis operation LSM performed well and no interface reactions were observed between the anode and YSZ electrolyte. LSM has a relatively low conductivity and the electrode reaction is limited to the triple phase boundary regions. Mixed ionic-electronic conductors of LSCo and LSF were investigated, with these materials the anode reaction is not limited to triple phase boundaries. The LSCo anode had adherence problems in the electrolysis cells due to the thermal expansion coefficient mismatch with the YSZ electrolyte. The LSCo reacted with the YSZ at the anode/electrolyte interface forming insulating zirconate phases. Due to these issues the LSCo anode cells performed the poorest of the three. The performance of electrolysis cells with LSF anode exceeded both LSM and LSCo, particularly under steam operation, although an interface reaction between the LSF anode and YSZ electrolyte was observed. In addition to the anode material studies this work included the development of solid oxide electrolyser tubes from tape cast precursor materials. Tape casting is a cheap processing method, which allows for co-firing of all ceramic components. The design development resulted in a solid design, which can be fabricated reliably, and balances strength with performance. The design used LSM anode, YSZ electrolyte, and Ni-YSZ cathode materials but could easily be adapted for the use of other component materials. Proper sintering rates, cathode tape formulation, tube length, tape thickness, and electrolyte thickness were factors explored in this work to improve the electrolyser tubes.

Page generated in 0.0392 seconds