• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 27
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Onset and Progression of Neurodegeneration in Mouse Models for Defective Endocytosis

Rostosky, Christine Melina 09 November 2018 (has links)
No description available.
22

The Role of RNF157 in Central Nervous System Development / Die Rolle von RNF157 während der Entwicklung des zentralen Nervensystems

Matz, Annika 11 October 2012 (has links)
No description available.
23

Role of the CBL Family of E3-Ubiquitin Ligases in the Humoral Immune Response

Li, Xin 04 1900 (has links)
No description available.
24

Nouveau regard sur la signalisation AMPK : multiples fonctions de nouveaux interacteurs

Zorman, Sarah 08 November 2013 (has links) (PDF)
La protéine kinase activée par AMP (AMPK) est un senseur et régulateur central de l'état énergétique cellulaire, mais ces voies de signalisation ne sont pour le moment que partiellement comprises. Deux criblages non-biaisés pour la recherche de partenaires d'interaction et de substrats d'AMPK ont précédemment été réalisés dans le laboratoire. Ces derniers ont permis l'identification de plusieurs candidats (protéines), mais leur rôle fonctionnel et physiologique n'était pas encore établi. Ici nous avons caractérisé la fonction de la relation entre AMPK et quatre partenaires d'interaction : gluthation S-transferases (GSTP1 and GSTM1), fumarate hydratase (FH), l'E3 ubiquitine-ligase (NRDP1), et les protéines associées à la membrane (VAMP2 and VAMP3). Chacune de ces interactions parait avoir un rôle différent dans la signalisation AMPK, agissant en amont ou en aval de la protéine AMPK. GSTP1 et GSTM1 contribueraient à l'activation d'AMPK en facilitant la S-glutathionylation d'AMPK en conditions oxydatives moyennes. Cette régulation non-canonique suggère que l'AMPK peut être un senseur de l'état redox cellulaire. FH mitochondrial est l'unique substrat AMPK clairement identifié. Etonnamment le site de phosphorylation se trouve dans le peptide signal mitochondrial, ce qui pourrait affecter l'import mitochondrial. NRDP1, protéine pour laquelle nous avons pour la première fois développé un protocole de production de la protéine soluble, est faiblement phosphorylée par l'AMPK. L'interaction ne sert pas à l'ubiquitination d'AMPK, mais affecte le renouvellement de NRDP1. Finalement, l'interaction de VAMP2/3 avec AMPK n'implique pas d'évènement de phosphorylation ou d'activation d'un des partenaires. Nous proposons un mécanisme de recrutement d'AMPK par VAMP2/3 (" scaffold ") au niveau des vésicules en exocytose. Ce recrutement favoriserait la phosphorylation de substrats de l'AMPK à la surface des vésicules en exocytoses. Une fois mis en commun, nos résultats enrichissent les connaissances sur les voies de signalisation AMPK, et suggèrent une grande complexité de ces dernières. Plus que les kinases en amont et des substrats en aval, la régulation de la signalisation d'AMPK se fait via des modifications secondaires autres que la phosphorylation, via des effets sur le renouvellement de protéines, et probablement via un recrutement spécifique de l'AMPK dans certains compartiments cellulaires.
25

La régulation de Staufen1 dans le cycle et la prolifération cellulaires

Gonzalez Quesada, Yulemi 02 1900 (has links)
Staufen1 (STAU1) est une protéine de liaison à l’ARN essentielle dans les cellules non-transformées. Dans les cellules cancéreuses, le niveau d’expression de la protéine est critique et étroitement lié à des évènements d’apoptose et des altérations dans la prolifération cellulaire. Le dsRBD2 de STAU1 lie des facteurs protéiques qui sont fondamentaux pour les fonctions de la protéine, telles que la liaison aux microtubules qui garantit sa localisation au fuseau mitotique et l’interaction avec les coactivateurs de l’E3 ubiquitine-ligase APC/C, ce qui garantit la dégradation partielle de STAU1 en mitose. Nous avons cartographié un nouveau motif F39PxPxxLxxxxL50 (motif FPL) dans le dsRBD2 de STAU1. Ce motif est fondamental pour l’interaction de la protéine avec les co-activateurs de l’APC/C, CDC20 et CDH1, et sa dégradation subséquente. Nous avons ensuite identifié un total de 15 protéines impliquées dans le processus inflammatoire qui partagent cette séquence avec STAU1. Nous avons prouvé, par des essais de co-transfection et de dégradation, que MAP4K1, l’une des protéines qui partagent ce motif, est aussi dégradé via ce motif FPL. Cependant, le motif de MAP4K1 n’est pas la cible de l’APC/C. Des techniques de biotinylation des protéines à proximité de STAU1 nous ont permis d’identifier TRIM25, une E3 ubiquitine ligase impliquée dans la régulation immunitaire et l’inflammation, comme protéine impliquée dans la dégradation de STAU1 et de MAP4K1 via le motif FPL. Ceci suggère des rôles de STAU1 dans la régulation du processus inflammatoire, ce qui est consistent avec des études récentes qui associent STAU1 à ce processus. Nous considérons que le motif FPL pourrait être à la base de la coordination de la régulation des protéines impliquées dans l’inflammation et la régulation de la réponse immune. Nos études sur l’effet anti-prolifératif de STAU1 lorsque surexprimé dans les cellules transformées ont identifié le domaine dsRBD2 de STAU1 comme responsable de ce phénotype. Des mutants qui miment les différents états de phosphorylation de la serine 20, située dans le domaine dsRBD2, sont à la base des changements dans la régulation de la traduction et la dégradation des ARNm liés à STAU1. Ces changements dans la régulation des ARNm par STAU1 sont associés aux altérations dans la prolifération des cellules transformées observées lors de la surexpression de STAU1. Nous avons aussi découvert que, après la transfection de STAU1, la cellule déclenche rapidement des évènements d’apoptose, et que ces évènements sont aussi dépendants de l’état de phosphorylation de la sérine 20 dans dsRBD2 de STAU1. Ces résultats suggèrent que STAU1 est un senseur qui contrôle la balance entre la survie et la prolifération cellulaire et que l’état de phosphorylation de son dsRBD2 est à la base de ce contrôle. Nos résultats indiquent que le dsRBD2 de STAU1 est le domaine de régulation du niveau d’expression protéique et un modulateurs des rôles de la protéine comme facteur post-transcriptionnel. Nous pensons que cibler la régulation de STAU1 et ses fonctions situées dans son domaine dsRBD2, serait important dans l’étude des maladies qui impliquent des événements d’apoptose, d’inflammation et de prolifération cellulaire telles que le cancer. / Staufen1 (STAU1) is an RNA-binding protein essential in untransformed cells. In cancer cells, the level of expression of the STAU1 protein is critical and it has been closely linked to events of apoptosis and to cell proliferation impairments. STAU1's dsRBD2 binds protein factors that are fundamental for the protein's functions, such as microtubules components that ensure the protein localization to the mitotic spindle and its interaction with E3 ubiquitin-ligase APC/C coactivators, which guarantees the partial degradation of STAU1 during mitosis. By mapping a novel F39PxPxxLxxxxL50 motif (FPL motif) in the dsRBD2 of STAU1, responsible of the interaction with the co-activators of APC/C, CDC20 and CDH1, and its subsequent degradation, we were able to identify a total of 15 proteins mostly involved in the inflammatory process that share this sequence with STAU1. We proved, by co-transfection and degradation assays that, MAP4K1, one of the proteins that shares this motif, is also degraded via this FPL motif. However, we demonstrated that this motif on MAP4K1 is not the target of APC/C. Biotinylation techniques of proteins near STAU1 allowed us to identify TRIM25, an E3 ubiquitin ligase involved in immune regulation and inflammation, as a protein involved in the degradation of STAU1 and MAP4K1 via the FPL motif. This suggests roles of STAU1 in the regulation of the inflammatory events, which is consistent with recent studies that associate STAU1 with this process. We consider that the FPL motif could be at the basis of the coordination of the regulation of proteins involved in inflammation and the regulation of the immune response. Our studies on the anti-proliferative effect of STAU1 when overexpressed in transformed cells identified the domain dsRBD2 of STAU1 as responsible for this phenotype. Mutants 8 that mimic different phosphorylation states of serine 20, located in dsRBD2, underlie changes in the regulation of translation and degradation of STAU1-linked mRNAs. These STAU1-dependent changes in mRNA regulation are associated with the proliferation impairment of transformed cells that is observed upon overexpression of STAU1. We also discovered that, after STAU1 transfection, the cell rapidly triggers apoptotic events, and that these events are also dependent on the phosphorylation state of serine 20 in dsRBD2 of STAU1. These results suggest that STAU1 is a sensor that controls the balance between cell survival and cell proliferation and that the state of phosphorylation of its dsRBD2 is the basis of this control. Our results indicate that the dsRBD2 of STAU1 is the regulatory domain of the level of protein expression and a modulator of the protein roles as a post-transcriptional factor. We believe that targeting the regulation of STAU1 and its functions located in its dsRBD2 domain, would be important in the study of diseases that involve apoptosis, inflammation and cell proliferation events such as cancer.
26

The Expanding Diversity of Plant U-box E3 Ubiquitin Ligases in Arabidopsis: Identifying AtPUB18 and AtPUB19 Function during Abiotic Stress Responses

Yee, Donna 17 February 2011 (has links)
The ability of plants to sense and respond to environmental and endogenous signals is essential to their growth and development. As part of these diverse cellular functions, ubiquitin-mediated proteolysis has emerged to be an important process involved in how plant signalling pathways can be regulated in response to such cues. Of the three enzymes involved in linking ubiquitin to protein targets, E3 ubiquitin ligases are of interest as they confer substrate specificity during this ubiquitination process. The overall focal point of this research is on plant U-box (PUB) E3 ubiquitin ligases, a family that has undergone a large gene expansion possibly attributable to the regulation of biological processes unique to the plant life cycle. In Arabidopsis there are 64 predicted PUBs, many for which biological roles have yet to be determined. And as research continues to uncover PUB functions, the functional diversity in the gene family will likely expand. Specifically the focus of this research is on characterizing two ARM repeat-containing PUBs – AtPUB18 and AtPUB19. General analysis of pub18 and pub19 T-DNA insertion lines for growth defects did not yield distinct altered phenotypes. Closer inspection of selected lines showed independent gene assortment phenotypes that, with further inordinately convoluted pursuit, proved to have an AtPUB18/19-unrelated outcome. The availability of Arabidopsis microarray databases provided exploratory expression profiling as a starting point to elucidate PUB function. AtPUB19 and closely related AtPUB18 are notable for their increased expression during abiotic stresses. While condition-directed germination assays showed a decreased sensitivity to salt and ABA for pub18 pub19 double insertion lines, no related change in susceptibility to these or other abiotic stress treatments were seen with condition-directed root growth assays. Thus, this preliminary work has begun to reveal insight into the complex abiotic stress-related roles AtPUB18 and AtPUB19 have during mediation of environmental stress acclimation in Arabidopsis.
27

The Expanding Diversity of Plant U-box E3 Ubiquitin Ligases in Arabidopsis: Identifying AtPUB18 and AtPUB19 Function during Abiotic Stress Responses

Yee, Donna 17 February 2011 (has links)
The ability of plants to sense and respond to environmental and endogenous signals is essential to their growth and development. As part of these diverse cellular functions, ubiquitin-mediated proteolysis has emerged to be an important process involved in how plant signalling pathways can be regulated in response to such cues. Of the three enzymes involved in linking ubiquitin to protein targets, E3 ubiquitin ligases are of interest as they confer substrate specificity during this ubiquitination process. The overall focal point of this research is on plant U-box (PUB) E3 ubiquitin ligases, a family that has undergone a large gene expansion possibly attributable to the regulation of biological processes unique to the plant life cycle. In Arabidopsis there are 64 predicted PUBs, many for which biological roles have yet to be determined. And as research continues to uncover PUB functions, the functional diversity in the gene family will likely expand. Specifically the focus of this research is on characterizing two ARM repeat-containing PUBs – AtPUB18 and AtPUB19. General analysis of pub18 and pub19 T-DNA insertion lines for growth defects did not yield distinct altered phenotypes. Closer inspection of selected lines showed independent gene assortment phenotypes that, with further inordinately convoluted pursuit, proved to have an AtPUB18/19-unrelated outcome. The availability of Arabidopsis microarray databases provided exploratory expression profiling as a starting point to elucidate PUB function. AtPUB19 and closely related AtPUB18 are notable for their increased expression during abiotic stresses. While condition-directed germination assays showed a decreased sensitivity to salt and ABA for pub18 pub19 double insertion lines, no related change in susceptibility to these or other abiotic stress treatments were seen with condition-directed root growth assays. Thus, this preliminary work has begun to reveal insight into the complex abiotic stress-related roles AtPUB18 and AtPUB19 have during mediation of environmental stress acclimation in Arabidopsis.

Page generated in 0.1139 seconds