• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 11
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Interactions between Chromatin-associated Proteins and Epstein-Barr virus Nuclear Antigen 1 (EBNA1)

Wang, Shan 31 August 2012 (has links)
Epstein-Barr virus (EBV) is a gammaherpesvirus that persistently infects more than 90% of the human population and its latent infection is associated with several malignancies. EBNA1 is the only viral protein required for the persistence of EBV episomes through its contributions to the replication, mitotic segregation of EBV episomes, and transcriptional activation of viral latency genes. These functions require EBNA1 binding to the DNA elements within the EBV genome that are important for transcription and replication, and interactions of EBNA1 with cellular factors. The aim of this thesis is to characterize the functional significance of the interactions between EBNA1 and chromatin-associated proteins NAP1, TAF-I, and Brd4, particularly in EBNA1-mediated transcription and DNA replication. Here I investigated the interactions of EBNA1 with NAP1 or TAF-I that were previously discovered in our laboratory by proteomic methods. I found that EBNA1 binds directly to NAP1 and to the β isoform of TAF-I, resulting in increased solubility of EBNA1 in vitro. Brd4 was also found to bind to EBNA1 and this interaction is mediated by an EBNA1 sequence essential for transactivation. Brd4, NAP1 and TAF-I all localize with EBNA1 to the transcriptional element and alteration of their levels inhibits transcriptional activation, suggesting that these proteins contribute to EBNA1-dependent transactivation through protein complex formation at the transcriptional element. On the other hand, only TAF-I is recruited to the origin of replication by EBNA1 and acts as a repressor for EBNA1-mediated DNA replication. My data suggest that this negative regulation is linked to TAF-I’s ability to interfere with histone methylation and thus to alter chromatin structure at the origin of DNA replication. Finally, I showed that NAP1 and TAF-I are required for expression of lytic protein BZLF1 and that TAF-I associates with the BZLF1 promoter during lytic reactivation.
2

Functional Interactions between Chromatin-associated Proteins and Epstein-Barr virus Nuclear Antigen 1 (EBNA1)

Wang, Shan 31 August 2012 (has links)
Epstein-Barr virus (EBV) is a gammaherpesvirus that persistently infects more than 90% of the human population and its latent infection is associated with several malignancies. EBNA1 is the only viral protein required for the persistence of EBV episomes through its contributions to the replication, mitotic segregation of EBV episomes, and transcriptional activation of viral latency genes. These functions require EBNA1 binding to the DNA elements within the EBV genome that are important for transcription and replication, and interactions of EBNA1 with cellular factors. The aim of this thesis is to characterize the functional significance of the interactions between EBNA1 and chromatin-associated proteins NAP1, TAF-I, and Brd4, particularly in EBNA1-mediated transcription and DNA replication. Here I investigated the interactions of EBNA1 with NAP1 or TAF-I that were previously discovered in our laboratory by proteomic methods. I found that EBNA1 binds directly to NAP1 and to the β isoform of TAF-I, resulting in increased solubility of EBNA1 in vitro. Brd4 was also found to bind to EBNA1 and this interaction is mediated by an EBNA1 sequence essential for transactivation. Brd4, NAP1 and TAF-I all localize with EBNA1 to the transcriptional element and alteration of their levels inhibits transcriptional activation, suggesting that these proteins contribute to EBNA1-dependent transactivation through protein complex formation at the transcriptional element. On the other hand, only TAF-I is recruited to the origin of replication by EBNA1 and acts as a repressor for EBNA1-mediated DNA replication. My data suggest that this negative regulation is linked to TAF-I’s ability to interfere with histone methylation and thus to alter chromatin structure at the origin of DNA replication. Finally, I showed that NAP1 and TAF-I are required for expression of lytic protein BZLF1 and that TAF-I associates with the BZLF1 promoter during lytic reactivation.
3

A Functional Analysis of the EBNA1 Origin Binding Protein of Epstein-Barr Virus

Ceccarelli, Derek 02 1900 (has links)
Thesis / Doctor of Philosophy (PhD)
4

Contributions of Epstein-Barr Nuclear Antigen 1 (EBNA1) and the Family of Repeats (FR) Region to oriP-mediated Replication and Segregation Functions in Nasopharyngeal Carcinoma

Thawe, Natalia 16 August 2012 (has links)
The Epstein-Barr virus (EBV) EBNA1 protein mediates the replication and mitotic segregation of the EBV genomes via interactions with the viral oriP sequences. C666-1 is the only known nasopharyngeal carcinoma (NPC) cell line that stably maintains EBV in culture and I investigated whether this is due to differences in oriP-mediated functions in replication and segregation. I found that both C666-1 and EBV-negative NPC cell lines can replicate and maintain oriP plasmids for extended periods but that high EBNA1 levels interfered with plasmid segregation. The segregation element within oriP was recently shown to contain 29 repeated sequences instead of the 20 repeats in initial oriP isolates. I compared the functions of oriP with 20 or 29 repeats and found that the higher number of repeats decreased plasmid replication but increased plasmid maintenance, consistent with a segregation effect. Finally, I identified a potential role for promyelocytic leukemia nuclear bodies in oriP plasmid replication.
5

Contributions of Epstein-Barr Nuclear Antigen 1 (EBNA1) and the Family of Repeats (FR) Region to oriP-mediated Replication and Segregation Functions in Nasopharyngeal Carcinoma

Thawe, Natalia 16 August 2012 (has links)
The Epstein-Barr virus (EBV) EBNA1 protein mediates the replication and mitotic segregation of the EBV genomes via interactions with the viral oriP sequences. C666-1 is the only known nasopharyngeal carcinoma (NPC) cell line that stably maintains EBV in culture and I investigated whether this is due to differences in oriP-mediated functions in replication and segregation. I found that both C666-1 and EBV-negative NPC cell lines can replicate and maintain oriP plasmids for extended periods but that high EBNA1 levels interfered with plasmid segregation. The segregation element within oriP was recently shown to contain 29 repeated sequences instead of the 20 repeats in initial oriP isolates. I compared the functions of oriP with 20 or 29 repeats and found that the higher number of repeats decreased plasmid replication but increased plasmid maintenance, consistent with a segregation effect. Finally, I identified a potential role for promyelocytic leukemia nuclear bodies in oriP plasmid replication.
6

Rôle de l'interaction entre la protéine virale EBNA1 et le facteur cellulaire RCC1 dans la persistance du génome du virus d'Epstein-Barr / Role of the interaction between the viral protein EBNA1 and the cellular factor RCC1 for the persistance of the Epstein-Barr Virus genome

Deschamps, Thibaut 18 September 2015 (has links)
Le virus d’Epstein-Barr (EBV) est un herpesvirus dont la séroprévalence est d’environ 90 % de la population adulte mondiale. EBV est associé à de nombreuses pathologies tumorales. La primo infection conduit à l’établissement du virus sous forme latente dans les lymphocytes B mémoires. Au sein de ces cellules B, le génome viral est sous la forme d’un épisome, un ADN circulaire double brin, et une fraction restreinte de gènes viraux est exprimée. Afin de se maintenir aux cours des divisions cellulaires, le génome viral est répliqué en phase S par la machinerie cellulaire et ségrégé lors de la mitose dans chaque cellules filles. La réplication et la ségrégation du génome viral nécessitent 2 facteurs viraux que sont la protéine virale EBNA1 (Epstein-Barr Nuclear Antigen 1) et la région oriP sur le génome viral. En phase S, EBNA1 interagit directement avec l’oriP et y recrute le complexe de pré-réplication de l’ADN. En mitose, EBNA1 ancre l’épisome à la chromatine ce qui permet une ségrégation efficace. Les mécanismes d’interaction entre EBNA1 et la chromatine reste encore flou. Au cours de notre travail, nous avons identifié la protéine RCC1 comme un partenaire potentiel pour la protéine EBNA1 pouvant être impliqué dans l’ancrage d’EBNA1 à la chromatine. Nous avons validé cette interaction et caractérisé les régions d’interactions pour ces deux protéines. Par ailleurs nous avons démontré que RCC1 est recrutée sur l’oriP en présence d’EBNA1 et que ces deux protéines interagissent en mitose. À la lumière de nos résultats et des données de la littérature, nous proposons que l’interaction d’EBNA1 avec la chromatine est dynamique et implique à la fois des interactions directes (AT-Hook, interaction avec les nucléosomes) mais aussi des facteurs cellulaires (RCC1, EBP2 et HMGB2). / Epstein-Barr virus (EBV) is a ubiquitous herpesvirus associated with several human cancers. In proliferating latently-infected cells, the EBV genome persists as a circular plasmid that is replicated once per cell cycle and partitioned at mitosis. Both of these processes require a single viral protein, Epstein Barr nuclear antigen 1 (EBNA1), which binds to two clusters of cognate binding sites within the origin of plasmid replication (oriP). EBNA1 plays an essential role both in viral episome replication, by recruiting the cellular complex of DNA replication onto the oriP, and in the efficient segregation of the viral episomes, by tethering the viral DNA onto the mitotic chromosomes. Whereas the mechanisms of viral DNA replication have been well documented, the mechanisms involved in tethering EBNA1 to the cellular chromatin are far from being understood. Here we have identified Regulator of Chromosome Condensation 1 (RCC1) as a novel EBNA1 cellular partner. RCC1 is the only known nuclear guanine nucleotide exchange factor (RanGEF) for the small GTPase Ran enzyme. RCC1, associated with chromatin, is involved in the formation of RanGTP gradients critical for nucleo-cytoplasmic transport, mitotic spindle formation, and nuclear envelope reassembly after mitosis. We have used several approaches to demonstrate a direct interaction between these two proteins and to identify the regions. involved Moreover, by using Chromatin ImmunoPrecipitation assay (ChIP) we have shown that RCC1 is enriched in the oriP region of mini viral replicons in a manner dependent on EBNA1. Finally, by using a combination of confocal microscopy and FRET analysis to follow the dynamics of interaction between the two proteins throughout the cell cycle, we have demonstrated that EBNA1 and RCC1 closely associate on the chromosomes during metaphase. Taken together, our data strongly suggest an essential role for RCC1 in tethering EBNA1 - linked to the viral episome - to the metaphasic chromosomes. Our results and those of others lead us to the idea that the interaction between EBNA1 with the cellular chromosomes requires several factors such as direct interactions or cellular proteins and these interactions are complementary and / or redundant.
7

Vývoj protokolu pro transientní transfekci buněčné linie HEK293 EBNA1 / Development of transient transfection protocol for HEK293 EBNA1 cells

Šmíd, Jiří January 2009 (has links)
Recombinant proteins belong to considerable biofarmaceutics products used in biomedical research and in the treatment of human disease. Recombinant protines can be produced by stable transfection in big amount or by faster transient transfection with smaller amounts. To provide regular biological activity, it is necessary for the protein to be properly folded and post-translationally modified. As these modifications can be accurately performed only in mammalian cells, they have become the major host for complex r-protein expression. In this thesis is described transient transfection HEK 293 EBNA1 cells with linear polyethylenimines. These cells has been adapted to suspension cultivation in serum free medium. The cells were transfected with pcDNA3.1, pCI, pEBSV1, pCEP4, pEAK8 a pcDNA5/FRT/TO plasmids, everyone contained repoter gene SEAP. Concentration of SEAP in cell culture supernatants were determined in order to compare efficiencies of individual transfections. DNA:PEI ratio was another factor which was optimised and two different PEIs were compared. Highest achieved expresion was 50 mg per litre with transfection in 24 well plate when DNA:PEI ratio was 1:5. Comparison of six different plasmids give the bigest expresion pCEP4/SEAP, in well plate as well as in scaled up system.
8

Implication du virus Epstein-Barr ainsi que de la protéine virale EBNA1 dans la modification de l’épissage alternatif et dans le développement du cancer de l’estomac

Saavedra Armero, Victoria E. January 2016 (has links)
Le virus Epstein-Barr est un des virus dotés de propriétés oncogéniques. Ceci est inquiétant car le virus est présent sous forme d’infection latente dans 95% de la population adulte au niveau mondial. Bien que ce virus soit associé surtout aux lymphomes, d’autres types de cancer sont aussi connus par leur association à cette infection tels que le carcinome gastrique. En fait, 10% de tous les cas de carcinome gastrique sont associés à la présence du virus Epstein-Barr. Plusieurs protéines du virus ont été étudiées individuellement afin d’établir leurs propriétés oncogéniques. Parmi celles-ci, la protéine virale EBNA1 joue un rôle important au niveau de la carcinogénèse et son expression est détectée au niveau des tissus gastriques cancéreux associés à l’infection par le virus Epstein-Barr. Des études réalisées au cours de ces dernières années montrent la relation entre un patron aberrant de l’épissage alternatif des ARN messagers et différents types de cancer, comme le cancer du sein et de la prostate. Les travaux de recherche présentés dans ce mémoire visent à établir si le virus Epstein-Barr est capable de changer le patron d’épissage alternatif au niveau des tissus cancéreux de l’estomac. L’utilisation de données de séquençage à haut débit fait sur des tissus cancéreux et tissus sains d’estomac (infectés ou non par le virus Epstein-Barr) permettra d’estimer les changements au niveau du patron d’épissage alternatif en relation à l’état des tissus et de la présence du virus Epstein-Barr. Les résultats obtenus nous montrent que l’épissage alternatif de plus de 500 gènes est altéré lorsque le virus est présent. Parmi ces gènes plusieurs codent pour des facteurs d’épissage, des facteurs de transcription, et des suppresseurs de tumeurs qui pourraient être impliqués dans le processus de développement du cancer. Finalement, nos résultats montrent que le patron d’épissage alternatif d’une cellule est modifié lorsque celle-ci est infectée par le virus Epstein-Barr ou qu’elle exprime une de ses protéines virales EBNA1, et ces altérations touchent plusieurs gènes impliqués dans des processus biologiques et qui semblent favoriser le développement du cancer.
9

Contributions of Epstein-Barr Nuclear Antigen 1 (EBNA1) to Epithelial Cell Infections

Sivachandran, Nirojini 11 January 2012 (has links)
Epstein-Barr virus (EBV) latent infection is associated with lymphoid and epithelial tumours, including nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). Since EBNA1 protein is expressed in all EBV tumours, I explored whether EBNA1 alters the cellular environment in ways that would contribute to the development of these epithelial tumours. I have shown that EBNA1 disrupts nuclear bodies (NBs) formed by the PML tumor suppressor and degrades PML proteins in a proteasome dependent manner in NPC and GC cell lines. I have verified the role of EBNA1 in disrupting PML NBs through overexpression and silencing of EBNA1 and shown that EBNA1 alone is sufficient to mediate these effects. Using EBNA1 mutants I found that USP7 and protein kinase CK2 (two enzymes that negatively regulate PML NBs) are important for EBNA1-mediated disruption of PML NBs. Furthermore, I have shown that EBNA1 localizes to PML NBs, and interacts with PML IV, which mediates the enrichment of USP7 and CK2β with PML NBs and increases CK2 phosphorylation of PML proteins, a known prerequisite for PML degradation. Consequently, functions downstream of PML were impaired in the presence of EBNA1. In particular, cells expressing EBNA1 had decreased levels of p53acetylation, p21 and apoptosis in response to DNA damage. Furthermore, DNA repair was markedly impaired in these cells, despite the fact that they survived better after induction of DNA damage than cells lacking EBNA1. In keeping with these observations, immunohistochemistry staining of GC biopsies showed that EBV-positive GC biopsies had lower PML staining compared to EBV-negative samples. These results show that EBNA1 directly affects host cell processes that would be expected to promote malignant transformation. Additionally, I have shown that EBNA1's ability to disrupt PML NBs is important for reactivation of EBV from latency; hence, is required for efficient spread of EBV from host to host.
10

Contributions of Epstein-Barr Nuclear Antigen 1 (EBNA1) to Epithelial Cell Infections

Sivachandran, Nirojini 11 January 2012 (has links)
Epstein-Barr virus (EBV) latent infection is associated with lymphoid and epithelial tumours, including nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). Since EBNA1 protein is expressed in all EBV tumours, I explored whether EBNA1 alters the cellular environment in ways that would contribute to the development of these epithelial tumours. I have shown that EBNA1 disrupts nuclear bodies (NBs) formed by the PML tumor suppressor and degrades PML proteins in a proteasome dependent manner in NPC and GC cell lines. I have verified the role of EBNA1 in disrupting PML NBs through overexpression and silencing of EBNA1 and shown that EBNA1 alone is sufficient to mediate these effects. Using EBNA1 mutants I found that USP7 and protein kinase CK2 (two enzymes that negatively regulate PML NBs) are important for EBNA1-mediated disruption of PML NBs. Furthermore, I have shown that EBNA1 localizes to PML NBs, and interacts with PML IV, which mediates the enrichment of USP7 and CK2β with PML NBs and increases CK2 phosphorylation of PML proteins, a known prerequisite for PML degradation. Consequently, functions downstream of PML were impaired in the presence of EBNA1. In particular, cells expressing EBNA1 had decreased levels of p53acetylation, p21 and apoptosis in response to DNA damage. Furthermore, DNA repair was markedly impaired in these cells, despite the fact that they survived better after induction of DNA damage than cells lacking EBNA1. In keeping with these observations, immunohistochemistry staining of GC biopsies showed that EBV-positive GC biopsies had lower PML staining compared to EBV-negative samples. These results show that EBNA1 directly affects host cell processes that would be expected to promote malignant transformation. Additionally, I have shown that EBNA1's ability to disrupt PML NBs is important for reactivation of EBV from latency; hence, is required for efficient spread of EBV from host to host.

Page generated in 0.0793 seconds