• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Interplay between Inflammation and Matrix Stiffness: Evaluation of Cell Phenotype and Cytoplasmic Stiffness In Vitro

Ford, Andrew Joseph 13 August 2018 (has links)
The cellular microenvironment in vivo consists of both mechanical and chemical signals, which drive cell function and fate. These signals include the composition, architecture, and mechanical properties of the extracellular matrix (ECM), signaling molecules secreted by cells into their surroundings, as well as physical interactions between neighboring cells. Cells are able to interact with their surroundings through a number of different mechanisms such as remodeling of the ECM through adhesion, contraction, degradation, and deposition of proteins, as well as the secretion of pro- or anti-inflammatory molecules. In diseased states, where homeostasis has been perturbed, inflammatory signals are secreted which can modify the cellular microenvironment. Diseased states such as cancer and fibrosis are often associated with the excessive production of ECM proteins that subsequently lead to an increase in tissue stiffness and changes to ECM architecture. Such changes to the mechanical properties of the cellular microenvironment affect the cytoskeletal arrangement, migration and adhesion of both the parenchymal cells, as well as immune response cells, which migrate to the sites of injury. Further understanding of the inflammatory responses and their relationships to tissue stiffness and ECM architecture could aid in the development of novel strategies to predict diseases as well as to target and monitor therapies. Since inflammation and mechanical properties of the affected tissue are closely interlinked, obtaining a detailed understanding of the interplay between the properties of the microenvironment and the cells that reside within it will be very beneficial to obtain physiologically relevant information. We have investigated the combinatorial effects of matrix stiffness, and architecture in the presence of co-cultures of cells to determine the overall effect on cellular responses and phenotypes. We have conducted studies on co-cultures of cells in 2D and 3D environments to identify how cellular behavior is affected by dimensionality. / PHD / The cellular microenvironment in vivo consists of both mechanical and chemical signals, which drive cell function and fate. These signals include the composition and organization of the extracellular matrix (ECM), signaling molecules secreted by cells into their surroundings, as well as physical interactions between neighboring cells. Cells are able to interact with their surroundings through reorganization of the ECM and secretion of pro- or anti-inflammatory molecules. In diseased states, inflammatory signals are secreted which can modify the cellular microenvironment. Diseased states such as cancer and fibrosis are often associated with the excessive production of ECM proteins that subsequently lead to an increase in tissue stiffness and changes to ECM architecture. Such changes to the mechanical properties of the cellular microenvironment affect the function and behavior of cells within a given tissue. Further understanding of the inflammatory responses and their relationships to tissue stiffness and ECM architecture could aid in the development of novel strategies to predict diseases as well as to target and monitor therapies. Since inflammation and mechanical properties of the affected tissue are closely interlinked, obtaining a detailed understanding of the interplay between the properties of the microenvironment and the cells that reside within it will be very beneficial to obtain physiologically relevant information. We have investigated the combinatorial effects of matrix stiffness, and architecture in the presence of co-cultures of cells to determine the overall effect on cellular responses and phenotypes. We have conducted studies on co-cultures of cells in 2D and 3D environments to identify how cellular behavior is affected by dimensionality.
2

Effects of mechanical stimulation on fibroblast-guided microstructural and compositional remodeling

De Jesús, Aribet M. 01 May 2016 (has links)
Many physiological and pathological processes, such as wound healing and tissue remodeling, are heavily influenced by continuous mechanical cell-cell and cell-ECM communication. Abnormalities that may compromise the biomechanical communication between the cells and the ECM can have significant repercussions on these physiological and pathological processes. The state of the mechanical environment and the reciprocal communication of mechanical signals between the ECM and the cell during wound healing and aged dermal tissue regeneration may be key in controlling the quality of the structure and physical properties of regenerated tissue. This dissertation encompasses a series of studies developed for characterizing the effects of mechanical cues on altering and controlling tissue remodeling, and regeneration in the context of controlling scar formation during wound healing, and the maintenance and regeneration of the dermal extracellular matrix (ECM) during aging. In order to achieve this goal, in vitro models that contained some features of the provisional ECM, and the ECM of the dermis were developed and subjected to an array of quantifiable mechanical cues. Wound models were studied with different mechanical boundary conditions, and found to exhibit differences in initial short-term structural remodeling that lead to significant differences in the long-term synthesis of collagen after four weeks in culture. Dermal models seeded with fibroblasts from individuals of different ages were treated with a hyaluronic acid (HA)-based dermal filler. Changes in the mechanical environment of the dermal models caused by swelling of the hydrophilc HA, resulted in changes in the expression of mechanosensitive, and ECM remodeling genes, essential for the maintenance and regeneration of dermal tissue. Taken together, these data provide new insights on the role of mechanical signals in directing tissue remodeling.
3

Functional studies on the mechanosensitive ion channel PIEZO1 in human induced pluripotent stem cell-derived cardiomyocytes

Bikou, Maria 09 March 2022 (has links)
Der Herzmuskel muss sich einer dynamischen und sich mechanisch verändernden Umgebung anpassen. Die Mechanosignaltransduktion ermöglicht es Zellen mechanischen Kräfte zu erfassen und durch nachgeschaltete biochemische Signalkaskaden darauf zu reagieren. Obwohl verschiedene Gewebestrukturen und Proteine damit in Verbindung gebracht wurden, wie das Herz die mechanischen Kräfte wahrnimmt, ist unser Verständnis der kardialen Mechanosignaltransduktion unvollständig. Durch Dehnung aktivierte Ionenkanäle spielen eine wichtige Rolle bei der mechanosensitiven Autoregulation des Herzens. Um die funktionelle Rolle von PIEZO1 in Kardiomyozyten zu untersuchen, habe ich daher PIEZO1 in induzierten pluripotenten Stammzellen mittels Genomeditierung deletiert. Die PIEZO1-/- Zellen wurden dann in lebensfähige, herzähnlich schlagende Kardiomyozyten differenziert. In phänotypische Analysen der elektrophysiologischer Eigenschaften, Zellmorphologie und der herzähnlichen Schlagaktivität habe ich den Effekt der PIEZO1-deletion in genomeditierten Kardiomyozyten untersucht. Die Deletion von PIEZO1 zeigte zum ersten Mal, dass es PIEZO1-abhängige dehnungsaktivierte und Kalzium-Ströme in vom Menschen stammenden differenzierten Kardiomyozyten gibt. Dies legt nahe, dass PIEZO1 eine Rolle in der Mechanosignaltransduction in Herzzellen spielt. Darüber hinaus zeigte eine RNA-Sequenz Analyse, dass der Verlust von PIEZO1 in vom Menschen stammenden differenzierten Kardiomyozyten mit der Herunterregulation von Proteinen korreliert, die für die extrazellulärer Matrix von Bedeutung sind. Diese Daten unterstreichen die Rolle von PIEZO1 in Kardiomyozyten und legen seine Bedeutung für die Organisation und Struktur der extrazellulären Matrix nahe. / The cardiac muscle has to adapt in a highly dynamic mechanical environment. Mechanotransduction is the process that allows cells to sense the mechanical forces and respond by downstream biochemical signaling cascades. Although different tissue structures and proteins have been implicated in how the heart senses the mechanical forces, yet our understanding in cardiac mechanotransduction is incomplete. Stretch-activated channels (SACs) have been suggested to play an important role in the mechanosensitive autoregulation of the heart. PIEZO1 is a stretch-activated channel and has been involved in vascularization, erythrocyte volume homeostasis and regulation of the baroreceptor reflex, yet its role in cardiac mechanotransduction has not been described. To study the functional role of PIEZO1 in cardiomyocytes I have generated a PIEZO1 knockout (KO) human induced pluripotent cell (hiPSC) line using genome editing technology. The genome edited cells were then differentiated into viable, beating cardiomyocytes. Different phenotypic analyses were conducted, including the evaluation of electrophysiological characteristics, observation of cell morphology and beating activity of the genome edited hiPSC-derived cardiomyocytes. With this approach the aim was to gain more insight into PIEZO1 function in cardiomyocytes using a reliable, efficient and reproducible human cellular model system. For the first time PIEZO1-dependent calcium transients and stretch-activated currents were observed in hiPSC-derived cardiomyocytes (hiPSC-CMs). This proposes a possible role of PIEZO1 as a cardiac mechanotransducer. Furthermore, RNA-seq analysis revealed that loss of PIEZO1 in hiPSC-CMs is associated with downregulation of the expression of extracellular matrix-associated proteins. These data highlight the role of PIEZO1 in cardiomyocytes and suggest its implication in extracellular matrix organization and structure.

Page generated in 0.0758 seconds