• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception, fabrication, caractérisation et modélisation de transistors MOSFET haute tension en technologie avancée SOI (Silicon-On-Insulator) / Conception, realization, characterization and modeling of High Voltage MOSFETs transistors in advanced SOI (silicon on insulator) technologies

Litty, Antoine 11 January 2016 (has links)
A l’heure où la miniaturisation des technologies CMOS sur substrat massif atteint des limites, la technologie FDSOI (silicium sur isolant totalement déserté) s’impose comme une alternative pour l’industrie en raison de ses meilleures performances. Dans cette technologie, l’utilisation d’un substrat SOI ultramince améliore le comportement des transistors MOSFETs et garantit leur intégrité électrostatique pour des dimensions en deçà de 28nm. Afin de lui intégrer de nouvelles fonctionnalités, il devient nécessaire de développer des applications dites « haute tension » comme les convertisseurs DC/DC, les régulateurs de tension ou encore les amplificateurs de puissance. Cependant les composants standards de la technologie CMOS ne sont pas capables de fonctionner sous les hautes tensions requises. Pour répondre à cette limitation, ces travaux portent sur le développement et l’étude de transistors MOS haute tension en technologie FDSOI. Plusieurs solutions sont étudiées à l’aide de simulations numériques et de caractérisations électriques : l’hybridation du substrat (gravure localisée de l’oxyde enterré) et la transposition sur le film mince. Une architecture innovante sur SOI, le Dual Gound Plane EDMOS, est alors proposée, caractérisée et modélisée. Cette architecture repose sur la polarisation d’une seconde grille arrière pour offrir un compromis RON.S/BV prometteur pour les applications visées. / Nowadays the scaling of bulk silicon CMOS technologies is reaching physical limits. In this context, the FDSOI technology (fully depleted silicon-on-insulator) becomes an alternative for the industry because of its superior performances. The use of an ultra-thin SOI substrate provides an improvement of the MOSFETs behaviour and guarantees their electrostatic integrity for devices of 28nm and below. The development of high-voltage applications such DC/DC converters, voltage regulators and power amplifiers become necessary to integrate new functionalities in the technology. However, the standard devices are not designed to handle such high voltages. To overcome this limitation, this work is focused on the design of a high voltage MOSFET in FDSOI. Through simulations and electrical characterizations, we are exploring several solutions such as the hybridization of the SOI substrate (local opening of the buried oxide) or the implementation in the silicon film. An innovative architecture on SOI, the Dual Ground Plane EDMOS, is proposed, characterized and modelled. It relies on the biasing of a dedicated ground plane introduced below the device to offer promising RON.S/BV trade-off for the targeted applications.
2

A Comparison of EDMOS and Cascode Structures for PA Design in 65 nm CMOS Technology

Al-Taie, Mahir Jabbar Rashid January 2013 (has links)
This thesis addresses the potential of implementing watt-level class-AB Power Amplifier (PA) for WLAN in 65 nm CMOS technology, at 2.4 GHz frequency. In total, five PAs have been compared, where the examined parameters were output power (Pout), linearity, power added efficiency (PAE), and area consumption. Four PAs were implemented using conventional cascode topology with different combination of transistors sizes in 65nm CMOS, and one PA using a high-voltage Extended Drain MOS (EDMOS) device, implemented in the same 65 nm CMOS with no process or mask changes. All schematics were created using Cadence Virtuoso CAD tools. The test benches were created using the Agilent's Advance Design System ( ADS) and simulated with the ADS-Cadence dynamic link. The simulation results show that the EDMOS PA (L=350 nm) has the smallest area, but has harder to reach the required Pout. Cascode no. 3 (L= 500,260 nm) has the best Pout (29.1 dBm) and PAE (49.5 %). Cascode no. 2 (L= 500,350 nm) has the best linearity (low EVM). Cascode no. 1 (L=500,500 nm) has low Pout (27.7 dBm). Cascode no.4 (L=500,60 nm) has very bad linearity. The thesis also gives an overview for CMOS technology, discusses the most important aspects in RF PAs design, such as Pout, PAE, gain, and matching networks. Different PA classes are also discussed in this thesis.
3

Design of a predriver for an EDMOS-based Class-D power amplifier

Mohsin, Taif January 2013 (has links)
This thesis addresses the potential of implementing a predriver for class-D power amplifier for WLAN in 65 nm CMOS technology. In total, eight different predrivers have been created using Cadence Virtuoso CAD tools. All designs have been tested using Agilent's Advance Design System (ADS) and simulated using the ADS-Cadence dynamic link. Furthermore, a comparison between the eight designs and the reference design has been done. The examined parameters were output power (Pout), efficiency, and effective area consumption. The simulation results show that most of the proposed designs obtain higher output power, higher efficiency, and lower effective area than the reference design. For the reference design, output power of 34.2 dBm, efficiency of 20.8 %, and effective area of 63952 um2 were obtained. For design No.1, the effective area was 31511um2, which was almost half of the area occupied by the reference design. For design No.3, the efficiency was 71.2 %, which was almost 3 and half times higher than the efficiency of the reference design. Furthermore, all designs, except design NO.7, gave more or less the same output power (around 34.4 dBm).

Page generated in 0.0239 seconds