• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 321
  • 204
  • 102
  • 38
  • 31
  • 18
  • 14
  • 9
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 847
  • 599
  • 283
  • 239
  • 148
  • 117
  • 101
  • 95
  • 83
  • 83
  • 74
  • 74
  • 73
  • 72
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Perturbations of Kähler-Einstein metrics /

Roth, John Charles. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves [86]-88).
512

Computational and astrophysical studies of black hole spacetimes

Bonning, Erin Wells, Matzner, Richard A. January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Richard Matzner. Vita. Includes bibliographical references. Available also from UMI company.
513

Photoassociation experiments on ultracold and quantum gases in optical lattices

Ryu, Changhyun, Heinzen, Daniel J., January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Daniel J. Heinzen. Vita. Includes bibliographical references. Also available from UMI.
514

Applied mathematics of space-time & space+time : problems in general relativity and cosmology : a thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics /

Cattoën, Céline. January 2009 (has links)
Thesis (Ph.D.)--Victoria University of Wellington, 2009. / Includes bibliographical references.
515

Erzeugung eines Bose-Einstein-Kondensats in einer stark anisotropen Magnetfalle

Schoser, Jürgen. January 2003 (has links)
Stuttgart, Univ., Diss., 2003.
516

On stability and evolution of solutions in general relativity /

Taylor, Stephen M., January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Physics and Astronomy, 2007. / Includes bibliographical references (p. 96-98).
517

Instabilities in asymptotically AdS spacetimes

Dold, Dominic Nicolas January 2018 (has links)
In recent years, more and more efforts have been expended on the study of $n$-dimensional asymptotically anti-de Sitter spacetimes $(\mathcal{M},g)$ as solutions to the Einstein vacuum equations \begin{align*} \mathrm{Ric}(g)=\frac{2}{n-2}\Lambda\, g \end{align*} with negative cosmological constant $\Lambda$. This has been motivated mainly by the conjectured instability of these solutions. The author of this thesis joins these efforts with two contributions, which are themselves independent of each other. In the first part, we are concerned with a superradiant instability for $n=4$. For any cosmological constant $\Lambda=-3/\ell^2$ and any $\alpha < 9/4$, we find a Kerr-AdS spacetime $(\mathcal{M},g_{\mathrm{KAdS}})$, in which the Klein-Gordon equation \begin{align*} \Box_g\psi+\frac{\alpha}{\ell^2}\psi=0 \end{align*} has an exponentially growing mode solution satisfying a Dirichlet boundary condition at infinity. The spacetime violates the Hawking-Reall bound $r_+^2 > |a|\ell$. We obtain an analogous result for Neumann boundary conditions if $5/4 < \alpha < 9/4$. Moreover, in the Dirichlet case, one can prove that, for any Kerr-AdS spacetime violating the Hawking-Reall bound, there exists an open family of masses $\alpha$ such that the corresponding Klein-Gordon equation permits exponentially growing mode solutions. Our result provides the first rigorous construction of a superradiant instability for a negative cosmological constant. In the second part, we study perturbations of five-dimensional Eguchi-Hanson-AdS spacetimes exhibiting biaxial Bianchi IX symmetry. Within this symmetry class, the Einstein vacuum equations are equivalent to a system of non-linear partial differential equations for the radius $r$ of the spheres, the Hawking mass $m$ and $B$, a quantity measuring the squashing of the spheres, which satisfies a non-linear wave equation. First we prove that the system is well-posed as an initial-boundary value problem around infinity $\mathcal{I}$ with $B$ satisfying a Dirichlet boundary condition. Second, we show that initial data in the biaxial Bianchi IX symmetry class around Eguchi-Hanson-AdS spacetimes cannot form horizons in the dynamical evolution.
518

Numerical relativity on cosmological past null cones

Van der Walt, Petrus Johannes January 2013 (has links)
The observational approach to cosmology is the endeavour to reconstruct the geometry of the Universe using only data that is theoretically verifiable within the causal boundaries of a cosmological observer. Using this approach, it was shown in [36] that given ideal cosmological observations, the only essential assumption necessary to determine the geometry of the Universe is a theory of gravity. Assuming General Relativity, the full set of Einstein field equations (EFEs) can be used to reconstruct the geometry of the Universe using direct observations on the past null cone (PNC) as initial conditions. Observationally and theoretically this is a very ambitious task and therefore, current developments have been restricted to spherically symmetric dust models while only relaxing the usual assumption of homogeneity in the radial direction. These restricted models are important for the development of theoretical foundations and also useful as verification models since they avoid the circularity of verifying what has already been assumed. The work presented in this thesis is the development of such a model where numerical relativity (NR) is used to simulate the observable universe. Similar to the work of Ellis and co-workers [36], a reference frame based on the PNC is used. The reference frame used here, however, is based on that of the characteristic formalism of NR, which has developed for calculating the propagation of gravitational waves. This provides a formalism that is well established in NR, making the use of existing algorithms possible. The Bondi-Sachs coordinates of the characteristic formalism is, however, not suitable for calculations beyond the observer apparent horizon (AH) since the diameter distance used as a radial coordinate becomes multi-valued when the cosmological PNC reconverges in the history of a universe, smaller in the past. With this taken into consideration, the Bondi-Sachs characteristic formalism is implemented for cosmology and the problem approaching the AH is investigated. Further developments address the limitations approaching the AH by introducing a metric based on the Bondi-Sachs metric where the radial coordinate is replaced with an affine parameter. The model is derived with a cosmological constant Λ incorporated into the EFEs where Λ is taken as a parameter of the theory of gravity rather than as a matter source term. Similar to the conventional characteristic formalism, this model consists of a system of differential equations for numerically evolving the EFEs as a characteristic initial value problem (CIVP). A numerical code implemented for the method has been found to be second order convergent. This code enables simulations of different models given identical data on the initial null cone and provides a method to investigate their physical consistency within the causally connected region of our current PNC. These developments closely follow existing 3D schemes developed for gravitational wave simulations, which should make it natural to extend the affine CIVP beyond spherical symmetric simulations. The developments presented in this thesis is an extended version of two papers published earlier.
519

Modelos de condensados de Bose-Einstein exatamente solúveis

Santos Filho, Gilberto Nascimento January 2007 (has links)
Investigamos nesta tese dois modelos integráveis para condensados de Bose-Einstein. Come¸camos com um modelo simples que descreve o tunelamento Josephson entre dois condensados de Bose-Einstein. Alguns aspectos matemáticos deste modelo tais como sua solução exata através do método algébrico do ansatz de Bethe são discutidos. Usando uma análise clássica, estudamos as equações de movimento e as curvas de nível do hamiltoniano. Finalmente, a dinâmica quântica do modelo é investigada usando diagonalização exata do hamiltoniano. Em ambas análises, a existência de um limiar de acoplamento entre uma fase não localizada e uma fase de auto-aprisionamento é evidente, em concordância qualitativa com os experimentos. Consideramos subsequentemente um modelo para um condensado de Bose-Einstein atômico-molecular. Por meio da álgebra de Yang-Baxter e do método algébrico do ansatz de Bethe sua integrabilidade é estabelecida e a solução do ansatz de Bethe, bem como os autovalores da energia são obtidos. Usando uma análise clássica, determinamos os pontos fixos do sistema no espaço de fase. Encontramos que os pontos fixos de bifurca¸c˜ao separam naturalmente o espa¸co dos parâmetros de acoplamento em quatro regiões. Estas quatro regiões originam as dinâmicas qualitativamente diferentes. Mostramos então, que esta classificação também vale para a dinâmica quântica. Finalmente, investigamos as transições de fase quânticas destes modelos utilizando os conceitos de emaranhamento, gap de energia e fidelidade. / In this thesis we investigate two integrable models for Bose-Einstein condensates. We begin with a simple model that describes Josephson tunneling between two Bose-Einstein condensates. We discuss some mathematical aspects of this model such as its exact solvability through the algebraic Bethe ansatz. Then using a classical analysis, we study the equations of motion and the level curves of the Hamiltonian. Finally, the quantum dynamics of the model is investigated using direct diagonalisation of the Hamiltonian. In both of these analyses, the existence of a threshold coupling between a delocalised and a self-trapped phase is evident, in qualitative agreement with experiments. We consider subsequently a model for atomic-molecular Bose-Einstein condensates. By means of the Yang-Baxter algebra and the algebraic Bethe ansatz its integrability is established and the Bethe ansatz solution as well as the energy eingenvalues are obtained. Then using a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics. Finally, we investigate the quantum phase transitions of these models using the concepts of entanglement, energy gap and fidelity.
520

Transições de fase quânticas e equações do ansatz de Bethe para o modelo de Bose-Hubbard de dois sítios

Lima, Diefferson Rubeni da Rosa de January 2010 (has links)
Neste trabalho nós investigamos o modelo de Bose-Hubbard de dois sítios atrativo sob o ponto de vista do ansatz de Bethe. Este modelo descreve o tunelamento Josephson entre dois condensados de Bose-Einstein. Nós iniciamos estabelecendo a integrabilidade do modelo através da álgebra de Yang-Baxter. Usando uma análise clássica nós obtemos o diagrama de parâmetros do sistema. Nós estudamos então as transições de fase quânticas do modelo usando os conceitos de gap de energia, emaranhamento e fidelidade. Nós encontramos que o ponto crítico obtido utilizando estes conceitos coincide com o ponto fixo de bifurcação obtido na análise clássica. Além disso, nós mostramos que este ponto crítico também pode ser identificado através de uma mudança no comportamento das soluções das equações do ansatz de Bethe do modelo para o estado fundamental. / In this work we investigate the attractive two-site Bose Hubbard model from a Bethe ansatz perspective. This model describes Josephson tunneling between two Bose-Einstein condensates. We begin by establishing the integrability of the model through the Yang- Baxter algebra. Using a classical analysis we obtain the phase space xed points of the system. Then we study the quantum phase transitions of the model using the concepts of energy gap, entanglement entropy and the delity. We nd that the critical point obtained using these concepts coincides with the bifurcation point obtained in the classical analysis. Moreover, we also show that this critical point can be also identi ed through a di erent behaviour of the ground-state solutions of the Bethe ansatz equations.

Page generated in 0.1575 seconds