• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 321
  • 204
  • 102
  • 38
  • 31
  • 18
  • 14
  • 9
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 847
  • 599
  • 283
  • 239
  • 148
  • 117
  • 101
  • 95
  • 83
  • 83
  • 74
  • 74
  • 73
  • 72
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Computational and astrophysical studies of black hole spacetimes

Bonning, Erin Wells 28 August 2008 (has links)
Not available / text
482

Photoassociation experiments on ultracold and quantum gases in optical lattices

Ryu, Changhyun 28 August 2008 (has links)
Not available / text
483

Dynamics of Feshbach molecule production

Hanna, Thomas Mark January 2008 (has links)
The variation of a magnetic field in the vicinity of a zero-energy resonance allows highly vibrationally excited molecules (‘Feshbach molecules’) to be produced from an ultracold atomic gas. In this thesis, we study the dynamics of this process. We begin by studying the dissociation of Feshbach molecules, showing that in the limit of a sudden jump the shape of the spectrum of dissociated atoms can act as a probe of the zero-energy resonance. For some resonances, such jumps are within reach of current experiments. We also study the intermediate region between sudden jumps and asymptotically wide, linear ramps. It is shown from a precise derivation how the latter limit leads to a universal spectrum with a shape independent of the implementation of the two-body physics, provided that the near-resonant scattering properties are correctly modelled. We then turn to the dynamics of Feshbach molecule production from thermal and condensed gases. Our microscopic quantum dynamics approach includes the exact twobody evolution as an input to the many-body calculations. We show that in the long-time limit, and the Markov limit for the interactions, the non-Markovian Boltzmann equation (NMBE) we derive for the one-body density matrix reduces to the normal Boltzmann equation. In the limit of short times and small depletion of the atomic gas, the molecule production efficiency can be calculated by thermally averaging the two-body transition probability density. This thermal averaging technique is applied to studies of the formation of Feshbach molecules using a magnetic field modulation that is near-resonant with the molecular bound state energy. The continuum is shown to have a significant effect on both the dynamics and efficiency of this process. We examine the dependence of the molecule production efficiency on the duration, amplitude and frequency of the modulation, as well as the temperature and density of the gas. This method of producing molecules is effective for a wide range of bound state energies, but requires sufficient variation of the two-body energy levels with magnetic field. Lastly, we implement the NMBE for the case of a fast linear ramp across a Feshbach resonance. The solution of this equation is made feasible by including a large part of the required computation in the kernel, which is calculated in advance. The NMBE allows predictions of the molecule production efficiency which go beyond the thermal averaging technique by accounting for the depletion and rethermalisation of the continuum. In the limit of small depletions, the two approaches give the same results. As the depletion increases, the two approaches differ due to many-body effects limiting the maximum possible molecule production efficiency. We have observed this in our simulations by considering higher-density gases. We have therefore shown the suitability and practicability of this beyond mean-field approach for application to further problems in the production of Feshbach molecules from ultracold gases.
484

Characteristic relaxation rates of a Bose gas in the classical, quantum and condensed regimes

Gust, Erich D. 31 October 2011 (has links)
We obtain the characteristic relaxation rates and relaxation modes of a Bose gas in three regimes. The classical regime corresponds to a classical gas of hard spheres and the quantum regime corresponds to an interacting quantum Bose gas with no Bose-Einstein condensate present. In the condensed regime a Bose-Einstein condensate is present and modifies the behavior of the gas. In each regime there is a different kinetic equation that describes the evolution of the relevant distribution function. The classical kinetic equation is the Boltzmann equation and the quantum kinetic equation with no condensate present is the Uehling-Uhlenbeck equation. When a condensate is present, we derive a new kinetic equation that describes the evolution of the momentum distribution of Bogoliubov excitations or bogolons. For each of the three kinetic equations, we linearize the collision integral and use it to generate the elements of a collision matrix. The eigenvalues of this matrix give us the characteristic relaxation rates and the eigenvectors give us the relaxation modes. We report numerical results for the eigenvalues in each regime as the particle species, density and temperature of the gas are varied. / text
485

Developing a Toolkit for Experimental Studies of Two-Dimensional Quantum Turbulence in Bose-Einstein Condensates

Wilson, Kali Elena January 2015 (has links)
Bose-Einstein condensates (BECs), with their superfluid behavior, quantized vortices, and high-level of control over trap geometry and other system parameters provide a compelling environment for studies of quantum fluid dynamics. Recently there has been an influx of theoretical and numerical progress in understanding the superfluid dynamics associated with two-dimensional quantum turbulence, with expectations that complementary experiments will soon be realized. In this dissertation I present progress in the development of an experimental toolkit that will enable such experimental studies of two-dimensional quantum turbulence. My approach to developing this toolkit has been twofold: first, efforts aimed at the development of experimental techniques for generating large disordered vortex distributions within a BEC; and second, efforts directed towards the design, implementation, and characterization of a quantum vortex microscope. Quantum turbulence in a superfluid is generally regarded as a disordered tangle of quantized vortices in three dimensions, or a disordered planar distribution of quantized vortices in two dimensions. However, not all vortex distributions, even large disordered ones, are expected to exhibit robust signatures of quantum turbulence. Identification and development of techniques for controlled forcing or initialization of turbulent vortex distributions is now underway. In this dissertation, I will discuss experimental techniques that were examined during the course of my dissertation research, namely generation of large disordered distributions of vortices, and progress towards injecting clusters of vortices into a BEC. Complimentary to vortex generation is the need to image these vortex distributions. The nondeterministic nature of quantum turbulence and other far-from-equilibrium superfluid dynamics requires the development of new imaging techniques that allow one to obtain information about vortex dynamics from a single BEC. To this end, the first vortex microscope constructed as part of my dissertation research enabled the first in situ images of quantized vortices in a single-component BEC, obtained without prior expansion. I have further developed and characterized a second vortex microscope, which has enabled the acquisition of multiple in situ images of a lattice of vortex cores, as well as the acquisition of single in situ images of vortex cores in a BEC confined in a weak hybrid trap. In this dissertation, I will discuss the state-of-the-art of imaging vortices and other superfluid phenomena in the University of Arizona BEC lab, as indicated by the examined performance of the quantum vortex microscope.
486

Χωροχρονικές συνέπειες της Θεωρίας Χορδών σε χαμηλές διαστάσεις

Ζωάκος, Δημήτριος 30 July 2007 (has links)
Στόχος της διατριβής είναι η αναζήτηση υπερσυμμετρικών λύσεων με προέλευση από την Μ θεωρία και τη θεωρία χορδών στις 10-διαστάσεις, με συνακόλουθη μελέτη των συνεπειών τους στις 4-διαστάσεις μέσω της αντιστοιχίας βαρύτητας/βαθμίδας. Στο πρώτο βήμα προχωρούμε σε συστηματική κατασκευή υπερσυμμετρικών βαρυτικών λύσεων της υπερβαρύτητας σε διάφορες διαστάσεις με μειωμένη Lorentzian ολονομία. Η κατασκευή μας βασίζεται στην εισαγωγή χρονικής εξάρτησης στις παραμέτρους moduli των Riemannian αντιγράφων. Συνεπώς οδηγούμαστε σε D-διάστατες υπερσυμμετρικές λύσεις κενού με Lorentzian ομάδα ολονομίας της μορφής G×RD-2. Στο δεύτερο βήμα προσεγγίζουμε τους 5-διάστατους χώρους Sasaki-Einstein, οι οποίοι παρεμβάλονται μεταξύ της S5 και του T1,1. Χρησιμοποιώντας τους 5-διάστατους αυτούς χώρους σαν βάση κατασκευάζουμε 6-διάστατους υπερσυμμετρικούς κώνους, οι οποίοι στη συνέχεια θα αποτελέσουν τα δομικά στοιχεία για την κατασκευή λύσεων της 10-διάστατης υπερβαρύτητας τύπου ΙΙΒ για συσσωματώματα από D3 και D5-βράνες. Στο τρίτο βήμα μελετάμε τις δυϊκές βαρυτικές λύσεις του κλάδου Coulomb που αντιστοιχούν σε μια marginally παραμορφωμένη N=4 θεωρία Yang-Mills. Μέσα από μια αλληλουχία από Τ δυϊκότητες και μετατοπίσεις συντεταγμένων κατασκευάζουμε το δυϊκο βαρυτικό υπόβαθρο, ουσιαστικά παρουσιάζοντας μια γενική μεθοδολογία. Εξετάζουμε ενδελεχώς το ζήτημα της υπερσυμμετρίας και πως αυτή ελαττώνεται από Ν=4 σε Ν=1. Στη συνέχεια ανιχνεύουμε την γεωμετρία μέσα από τον υπολογισμό του βρόχου Wilson για ζεύγος βαρέων quark-antiquark, αποκαλύπτοντας φαινόμενα θωράκισης και εγκλωβισμού για το δυναμικό. / Our main objective is the quest of supersymmetric solutions coming from M theory and 10-dim string theory together with the study of their implications in 4-dim through the AdS/CFT correspondence. As a first step we proceed in a systematic construction of supersymmetric supergravity solutions in diverse dimensions with reduced Lorentzian holonomy. Our construction is based on time dependence insertion over the moduli parameters of the Riemannian counterparts. We end up with D-dim supersymmetric vacuum solutions with Lorentzian holonomy group of the semidirect product type G×RD-2. In the second step we get near the 5-dim Sasaki-Einstein spaces which interpolate between S5 and T1,1. Using those 5-dim spaces as a base we construct the 6-dim supersymmetric cones which in turn will form the building blocks for the consequent construction of supersymmetric type-IIB supergravity solutions representing a stack of D3- and D5-branes. In the last step we study the gravity duals of the Coulomb branch of marginally deformed N=4 Yang-Mills theory. Through a sequence of T dualities and coordinate shifts we construct the dual supergravity background, in other words present a general methodology. We examine in detail the issue of supersymmetry and in particular the way it is reduced from N=4 to N=1. We probe the geometry through the computation of the expectation value of the Wilson loop operator for a pair of quark-antiquark, reviling confining and complete screening phenomena for the potential.
487

Critical behavior for the model of random spatial permutations

Kerl, John R. January 2010 (has links)
We examine a phase transition in a model of random spatial permutations which originates in a study of the interacting Bose gas. Permutations are weighted according to point positions; the low-temperature onset of the appearance of arbitrarily long cycles is connected to the phase transition of Bose-Einstein condensates. In our simplified model, point positions are held fixed on the fully occupied cubic lattice and interactions are expressed as Ewens-type weights on cycle lengths of permutations. The critical temperature of the transition to long cycles depends on an interaction-strength parameter α. For weak interactions, the shift in critical temperature is expected to be linear in α with constant of linearity c. Using Markov chain Monte Carlo methods and finite-size scaling, we find c = 0.618 ± 0.086. This finding matches a similar analytical result of Ueltschi and Betz. We also examine the mean longest cycle length as a fraction of the number of sites in long cycles, recovering an earlier result of Shepp and Lloyd for non-spatial permutations. The plan of this paper is as follows. We begin with a non-technical discussion of the historical context of the project, along with a mention of alternative approaches. Relevant previous works are cited, thus annotating the bibliography. The random-cycle approach to the BEC problem requires a model of spatial permutations. This model it is of its own probabilistic interest; it is developed mathematically, without reference to the Bose gas. Our Markov-chain Monte Carlo algorithms for sampling from the random-cycle distribution - the swap-only, swap-and-reverse, band-update, and worm algorithms - are presented, compared, and contrasted. Finite-size scaling techniques are used to obtain information about infinite-volume quantities from finite-volume computational data.
488

Exploring Matter-wave Dynamics with a Bose-Einstein Condensate

Chang, Rockson 08 January 2014 (has links)
Bose-Einstein condensates of dilute gases provide a rich and versatile platform to study both single-particle and many-body quantum phenomena. This thesis describes several experiments using a Bose-Einstein condensate of Rb-87 as a model system to study novel matter-wave effects that traditionally arise in vastly different systems, yet are difficult to access. We study the scattering of a particle from a repulsive potential barrier in the non-asymptotic regime, for which the collision dynamics are on-going. Using a Bose-Einstein condensate interacting with a sharp repulsive potential, two distinct transient scattering effects are observed: one due to the momentary deceleration of particles atop the barrier, and one due to the abrupt discontinuity in phase written on the wavepacket in position-space, akin to quantum reflection. Both effects lead to a redistribution of momenta, resulting in a rich interference pattern that may be used to reconstruct the single-particle wavefunction. In a second experiment, we study the response of a particle in a periodic potential to an applied force. By abruptly applying an external force to a Bose-Einstein condensate in a one-dimensional optical lattice, we show that the initial response of a particle in a periodic potential is in fact characterized by the bare mass, and only over timescales long compared to that of interband dynamics is the usual effective mass an appropriate description. This breakdown of the effective mass description on fast timescales is difficult to observe in traditional solid state systems due to their large bandgaps and fast timescale of interband dynamics. Both these experiments make use of the condensate's long coherence length, and the ability to shape and modulate the external potential on timescales fast compared to the particle dynamics, allowing for observation of novel matter-wave effects.
489

Exploring Matter-wave Dynamics with a Bose-Einstein Condensate

Chang, Rockson 08 January 2014 (has links)
Bose-Einstein condensates of dilute gases provide a rich and versatile platform to study both single-particle and many-body quantum phenomena. This thesis describes several experiments using a Bose-Einstein condensate of Rb-87 as a model system to study novel matter-wave effects that traditionally arise in vastly different systems, yet are difficult to access. We study the scattering of a particle from a repulsive potential barrier in the non-asymptotic regime, for which the collision dynamics are on-going. Using a Bose-Einstein condensate interacting with a sharp repulsive potential, two distinct transient scattering effects are observed: one due to the momentary deceleration of particles atop the barrier, and one due to the abrupt discontinuity in phase written on the wavepacket in position-space, akin to quantum reflection. Both effects lead to a redistribution of momenta, resulting in a rich interference pattern that may be used to reconstruct the single-particle wavefunction. In a second experiment, we study the response of a particle in a periodic potential to an applied force. By abruptly applying an external force to a Bose-Einstein condensate in a one-dimensional optical lattice, we show that the initial response of a particle in a periodic potential is in fact characterized by the bare mass, and only over timescales long compared to that of interband dynamics is the usual effective mass an appropriate description. This breakdown of the effective mass description on fast timescales is difficult to observe in traditional solid state systems due to their large bandgaps and fast timescale of interband dynamics. Both these experiments make use of the condensate's long coherence length, and the ability to shape and modulate the external potential on timescales fast compared to the particle dynamics, allowing for observation of novel matter-wave effects.
490

Hydrodynamics of Binary Bose-Einstein Condensates and Hydro-elasticity of the Inner Crust of Neutron Stars

Kobyakov, Dmitry January 2014 (has links)
In the present thesis, “Hydrodynamics of Binary Bose-Einstein Condensates and Hydro-elasticity of the Inner Crust of Neutron Stars”, the hydrodynamic effects, instabilities and superfluid turbulence in binary immiscible ultracold gases, and hydro-elastic macroscopic coupled modes and microscopic structure of the inner layers of the crust of neutron stars, are studied. The ultracold gas dynamics can be realized in the laboratory. The excitation modes of the inner crust determine a number of observable properties such as elasticity, thermal properties and mass transport properties. Here we focus on expanding the details, rather than repeating the results presented in the published articles. In the part of the thesis related to atomic ultracold gases, we utilize the physical parameters in the experimentally realizable parameter region. We numerically simulate the coupled non-linear Schrödinger equations, and calculate observable quantities, such as phase and modulus of the order parameter, conditions needed for observation of the Rayleigh-Taylor instability and for turbulence generation. The numerical calculations are accompanied by analytical description of the processes. The dispersion relation for capillary-gravitational waves at the interface between two ultracold gases, is derived straightforwardly from the superfluid Lagrangian. The equations of motion for centre-of-mass of the superfluids are derived, and then used in our model of the quantum swapping of immiscible superfluids pressed by a strong external force. By numerical simulation, we find that the Kelvin-Helmholtz instability which occurs at the non-linear stage of the Rayleigh-Taylor instability, can generate quantum turbulence with peculiar properties. We find that two-dimensional superfluid systems with weak inter-component repulsion are different from previously studied strongly repulsive binary superfluids, because the quantum Kelvin-Helmholtz instability in weakly repulsive superfluids rolls up the whole interface forming a vortex bundle, similarly to dynamics of the shear fluid layers in the classical hydrodynamics. Production of vortex bundles favours the Kolmogorov spectrum of turbulence, and we find that the Kolmogorov scaling indeed is present in a freely decaying turbulence. In the part of the thesis related to neutron stars, we study the inner crust of neutron stars, where the fully ionized atomic nuclei coexist with a superfluid of neutrons. The interaction between superfluid neutrons and the crystallized Coulomb plasma is due to the interaction between density perturbations (interaction of the scalar type), and between the current - the non-dissipative entrainment effect (interaction of the vector type). We calculate velocities of the collective modes of the crystal coupled to superfluid neutrons. As an input we use the results of microscopic nuclear calculations in the framework of the compressible liquid drop model (the Lattimer and Swesty equation of state), and more recent effective Thomas-Fermi calculations with shell corrections (N. Chamel, and the Brussels theoretical nuclear physics group). Knowledge of velocities as functions of the matter density in the inner crust is important for calculation of a number of dynamic and transport properties. The heat transport properties of the inner crust are directly observable in accreting binary systems (low-mass x-ray binaries). The mass transport properties of the inner crust are directly linked to the rotational evolution, being a key physical ingredient of the pulsar glitch phenomenon. The elastic properties are related to the vibrational modes of the star, and to the breaking stress of the crust. In the second part of our work on neutron stars we investigate the microscopic structure of the inner crust treating the structure as an anisotropic crystal coupled to s-wave superfluid neutron liquid. As we analyse dynamics of the elementary excitations at higher wavenumbers (smaller scales), we reach the edge of the first Brillouin zone. The Lattimer-Swesty data is applicable for wavenumbers much smaller than the edge of the first Brillouin zone. We extrapolate the data through the whole first Brillouin zone to calculate the fastest growth rate of the unstable modes. The crucial step is to calculate the mode velocities in anisotropic crystal incorporating both the induced neutron-proton interactions, and the electron screening properties. We find that the combined influence of these two effects leads to softening of the longitudinal phonon of the lattice above about the Thomas-Fermi screening wavenumber of the electrons. The critical wavenumber when the frequency becomes purely imaginary is about  1/5 - 2/3  of the reciprocal lattice vector, thus validating our assumption. The imaginary mode frequency implies instability at finite wavenumbers. Our calculations suggest that the mode at the first Brillouin zone edge is the most unstable, and thus the structure experiences a displacive phase transition when the central ion of a unit cell of the body-cubic-centred lattice, is displaced to the cube face. Thus, the electronic structure of matter at densities above the neutron drip [1], is richer than previously appreciated, and new microscopic calculations of nuclear structure are necessary which take into account the high-wavenumber physics. Such calculations will provide crucial input to models interpreting the quasi-periodic oscillations in Soft Gamma Repeaters as magnetar x-ray flares, and to the theory of glitches of neutron stars. [1] The neutron drip density is ~3×1011 g cm-3.

Page generated in 0.2703 seconds