161 |
Etude de l’application de champs électriques pulsés sur des microalgues en vue de l’extraction de lipides neutres. / Study of the application of pulsed electric fields (PEF) on microalgae for the extraction of neutral lipids.Bodenes, Pierre 10 May 2017 (has links)
Les microalgues, de par leur diversité, peuvent offrir une multiplicité de molécules bio-sourcées pour des applications variées (alimentation, énergie, santé etc…). Cependant, la production de biodiesel à partir de microalgues, désignée comme la 3e génération de biocarburant, nécessite encore une optimisation lors de l’étape de culture de la biomasse ou lors de l’extraction de l’huile pour que le procédé soit énergétiquement viable. Parmi les voies d’amélioration, l’application de champs électriques pulsés (PEF) en prétraitement à la biomasse pourrait améliorer la rentabilité énergétique du procédé d’extraction de lipides. Ce procédé appliqué aux microalgues est étudié dans le contexte d’une collaboration entre le laboratoire SATIE de l’ENS Cachan Paris Saclay et le laboratoire LGPM de Paris Saclay.Un microsystème d’électroporation a été conçu afin d’étudier in situ l’impact des champs électriques pulsés sur les cellules de microalgue, Chlamydomonas reinhardtii chargées en lipides. Parmi les principaux résultats du projet, l’étude énergétique du procédé a montré que les impulsions de très courte durée (5 µs) sont les moins énergivores. Associées à un champ électrique de 4.5 kV/cm, ces impulsions entrainent une perméabilisation réversible (80 % de cellules atteintes) de quelques secondes tandis qu’un champ de 7 kV/cm entraine un effet irréversible. Après ce prétraitement, les algues sont ensuite mélangées à de l’hexane afin d’évaluer si les lipides sont extraits plus facilement de la cellule. / Microalgae offer a multiplicity of applications for the production of bio-sourced compounds such as proteins, pigments, sugars and oils. However, the energy spent for algae culture and lipid extraction hinder the energetic viability of the process for the production of biofuel derived from algae oils. Among possible improvements, pulsed electric fields (PEF) may be used as a pre-treatment to extract valuable compounds from microalgae and making the process less energy demanding.This project started with a collaboration between the team of bio-micro-systems Biomis, laboratory SATIE, with the team of bio-process engineering laboratory LGPM to study in situ the effects of PEF on microalgae.First, a energetic study is performed in a micro-system specially built for this project to characterize in situ, the effect of various treatment parameters (pulse duration / electric field) on Chlamydomonas reinhardtii cells with high lipid content.Among the outputs of this study, an energetic optimization of PEF conditions shows that a high level of permeability and low energy consumption are obtained when using short pulses of 5 µs. Associated with an electric field of 4.5 kV/cm, the pores are reversible (80% of the cells) during few seconds, and with a field of 7 kV/cm or higher, the permeabilization is irreversible. Afterwards, this PEFpre-treatment is associated with solvent mixing (hexane) to evaluate if lipid extraction is improved.
|
162 |
Open a New Window of Plasma Diagnostics in the Solar Physics with Spectropolarimetric Observation / 太陽物理における偏光分光観測を用いた新しいプラズマ診断手法の開拓Anan, Tetsu 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18442号 / 理博第4002号 / 新制||理||1577(附属図書館) / 31320 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 一本 潔, 教授 嶺重 慎, 教授 柴田 一成 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
163 |
Electric Field Gradient Focusing-UV Detection for Protein AnalysisLin, Shu-Ling 05 July 2006 (has links) (PDF)
Electric field gradient focusing (EFGF) utilizes a hydrodynamic flow and an electric field gradient to focus and concentrate charged analytes and order them in a separation channel according to electrophoretic mobility. Elution can be achieved by decreasing the applied voltage or increasing the hydrodynamic flow. EFGF has the advantages of concentrating a large volume (100 micro-L) of target proteins without significant band broadening and simultaneously removing unwanted components from the sample. Two types of EFGF devices have been investigated to concentrate and separate proteins: a fiber-based EFGF device and a hydrogel-based EFGF device. Using fiber-based EFGF with UV detection, a concentration factor as high as 15,000 and a concentration limit of detection as low as 30 pM were achieved using bovine serum albumin as a model protein. I also demonstrated the potential of using fiber-based EFGF for quantitative protein analysis. Simultaneous desalting and protein concentration as well as online concentration of ferritin and simultaneous removal of albumin from a sample matrix were also performed using this fiber-based EFGF system. In the approach of utilizing hydrogel-based EFGF, online concentration of amyloglucosidase indicated a concentration limit of detection of approximately 20 ng/mL (200 pM) from a sample volume of 100 micro-L. Both voltage-controlled and flow-controlled elution methods were demonstrated using a 3-component protein mixture. Concentration of human α1-acid glycoprotein with simultaneous removal of human serum albumin was also described. A tandem EFGF system, which integrates fiber-based and hydrogel-based EFGF sections, was also investigated to selectively concentrate and separate proteins in a mixture. By carefully controlling the voltages applied to both sections, charged analytes with high mobilities were trapped in the fiber-based section, analytes with intermediate mobilities in the hydrogel-based section, and analytes with low mobilities not at all. A 3-way switching valve was incorporated in the system to purge the analytes with high mobilities periodically. Selective concentration and separation of myoglobin from a mixture were performed using the tandem EFGF system. Based on the experimental results described in this dissertation, EFGF shows potential for selective isolation, concentration, and quantitation of trace analytes such as proteins in biomedical samples.
|
164 |
Low Loss Hybrid Waveguide Electric Field Sensor Based on Optical D-fiberJohnson, Eric K. 26 November 2007 (has links) (PDF)
This thesis presents the fabrication of a low loss hybrid waveguide electric field(E-field) sensor based on optical D-fiber. This novel E-field sensor is formed as part of a contiguous fiber resulting in a flexible and small cross-section device that can be embedded into electronic circuitry. The in-fiber nature of this sensor also eliminates the need for alignment and packaging that conventional sensors need. An optical fiber can detect electric fields when the core of the fiber is partially removed and replaced with an electro-optic polymer. This polymer causes a change in the index of refraction in the waveguide of the device when in the presence of an electric field. The change in the effective index of refraction changes the speed of the light in the vertical axis relative to the light in the horizontal axis creating a phase change between the two axes. This phase change can be detected as a change in the polarity of the light coming out of the fiber. The sensor is formed by partially etching out the core of a D-shaped optical fiber and depositing a polymer to form a hybrid waveguide. The polymer becomes sensitive to electric fields through corona poling. The typical corona poling process is not amenable to poling a polymer located in the fiber core. A method of poling conducive to an in-fiber device was developed and demonstrated. Using PMMA and DR1 for proof of concept, the operation of the first in-fiber hybrid waveguide electric field sensor is demonstrated. Etch depth, polymer composition, and polymer spin rate are optimized to provide strong interaction between the light and the sensing portion of the hybrid waveguide while maintaining low optical loss. High frequency testing was demonstrated to show that the effect is electro-optic. AC testing also allows the Epi of the sensors to be determined at lower electric fields than are required for DC testing, eliminating charge build up and electric field break down issues.
|
165 |
Slab-Coupled Optical Fiber Sensors for Electric Field Sensing ApplicationsGibson, Richard S. 20 November 2009 (has links) (PDF)
This dissertation presents the creation of slab coupled optical sensors (SCOS) for electric field sensing applications. SCOS devices utilize the benefits of an optical fiber system for high bandwidth and low electromagnetic interference. These sensors are fabricated by means of mode coupling between a small section of D-shaped optical fiber (D-fiber) with a multi-mode electro-optic slab waveguide. Electric field detection is accomplished by monitoring the behavior of the resonances, seen as transmission dips in the D-fiber transmission, as they shift with electric fields. The novelties of SCOS devices include their small compact nature, potential for sensor multiplexing and a dielectric structure allowing low electromagnetic interference. The SCOS developed in this work been used to measure fields as low as 30 V/m with 1 kHz resolution bandwidth and a high degree of linearity. Due to their compact size they are capable of placement within devices to measure interior electric fields immeasurable by other sensors that are either too large for internal placement or disruptive of the internal fields due to metallic structure. Wavelength multiplexing allows multiple sensors to be placed on a single fiber for mapping electric fields at multiple instances. As an extension, SCOS multiplexing allows the potential for 3-d field sensing by use of multiple electro-optic crystals having orthogonal orientations of the electro-optic axis. This work performs a thorough analysis of SCOS design in order to optimize sensor efficiency for its various applications. Furthermore, the straightforward fabrication process for these sensors is outlined for the development of future uses of these sensors.
|
166 |
Directional Electric Field Sensing Using Slab Coupled Optical Fiber SensorsPerry, Daniel Theodore 05 February 2013 (has links) (PDF)
This thesis provides the details of a multi-axis electric field sensor. The sensing element consists of three slab coupled optical fiber sensors that are combined to allow directional electric field sensing. The packaged three-axis sensor has a small cross-sectional area of 0.5 cm x 0.5 cm achieved by using an x-cut crystal. The method is described that uses a sensitivity-matrix approach to map the measurements to field components. The calibration and testing are described resulting in an average error of 1.5º.This work also includes a description of the packaging method used as well as a thorough analysis of the directional sensitivity of potassium titanyl phosphate (KTP) and electro-optic polymer: the two materials used as sensing elements. Each of the two materials is highly direction sensitive creating minimal crosstalk between the sensors.
|
167 |
Application Improvements of Slab-Coupled Optical Fiber SensorsChadderdon, Spencer L. 17 March 2014 (has links) (PDF)
This dissertation explores techniques for improving slab-coupled optical fiber sensor (SCOS) technology for use in specific applications and sensing configurations. SCOS are advantageous for their small size and all-dielectric composition which permit non-intrusive measurement of electric fields within compact environments; however, their small size also limits their sensitivity. This work performs a thorough analysis of the factors contributing to the performance of SCOS and demonstrates methods which improve SCOS, while maintaining its small dimensions and high level of directional sensitivity. These improvements include increasing the sensitivity by 9x, improving the frequency response to include sub 300 kHz frequencies, and developing a method to tune the resonances. The analysis shows that the best material for the slab waveguide is an electro-optic polymer because of its low RF permittivity combined with high electro-optic coefficient. Additional improvements are based on changing the crystal orientation to a transverse configuration, which enhances the sensitivity due to a combined increase in the effective electro-optic coefficient and electric field penetration into the slab. The transverse SCOS configuration not only improves the overall sensitivity but increases the directional sensitivity of the SCOS. Lithium niobate and electro-optic polymer are both experimentally shown to exhibit minimal frequency dependent sensitivity making them suitable for broad frequency applications. Simultaneous interrogation of multiple SCOS with a single tunable laser is achieved by tuning the resonant wavelengths of KTP SCOS so their resonances overlap.
|
168 |
Shape optimization of coronashield geometry : Simulation techniques for minimizing electricfield with COMSOL 6.0Bjerned, Erik, Persson, Mattias, Danielsson, Axel January 2022 (has links)
This report focuses on the practicality and results of using the COMSOL 6.0 Optimization Module on a HVDC bushing corona shield model provided by Hitachi Energy to minimize electric field. The Optimization Module has several functions and parameters for altering the geometry of a model. Parameter Optimization, Polynomial Boundary and Free Shape Boundary was the primary methods used. The best results in minimizing the electric field was found with the Polynomial Boundary. The optimized shape decreased the maximum electric field by about 15% and when run with constraints to the change in volume the optimization showed similar results. Tests with Parameter Optimization did decrease the electric field but lacked the ability to fine-tune the shape like Polynomial Boundary can. Free Shape Boundaryseemed to have great potential in the documentation but we did not finda successful way of implementing the method. Through testing of different setups for methods and solvers we have concluded that the Optimization Module is both useful and practical for the given model and a clear improvement in electric field was observed in the new shape. Polynomial Boundary is the best option for the given model but more research is needed about Free Shape Boundary.
|
169 |
Developing Tools towards Ion Homeostasis in Spatially Polarized Excitable CellsLiu, Ziyi 16 January 2024 (has links)
In 1800, Volta, inspired by the electric organs of a genus of electric fish, the Electrophorus, invented the first electric batteries, which were termed "artificial electric organs." Since then, the far-reaching implications of the fishes’ electrogenesis have come under greater attention and interest. In these fishes, the electric organ resembles a series of batteries. The electric organs are formed by electrocytes (the "batteries") with a distinct cytomorphology for discharging and charging. Although the arrangements of electrocytes in the electric organ are well-understood, the mechanisms involved in generating electric discharges within equivalent circuits remain unclear. In this thesis, the first element consists of adapting spatially defined models that we use to investigate the process of electrocyte charging and recharging under the added assumption of ion homeostasis, the process by which a cell restores its internal milieu. The study focuses on Eigenmannia and Electrophorus, two genera of electric fish. Eigenmannia's steady high-frequency dipole oscillator-like electric organ discharges enables electro-sensing and electro-communication, whilst Electrophorus's brief taser-like electric bursts serve as tetanizing predatory assaults. In addition, the second section of this study proposes a one-dimensional charge difference model that focuses on the modification of endogenous electric fields resulting from the uneven distribution of ions in a homeostatic apparatus.
|
170 |
The influence of SiCl4s precursor on low temperature chloro carbon SiC epitaxy growthKotamraju, Siva Prasad 10 December 2010 (has links)
Significant progress in reducing the growth temperature of the SiC epitaxial growth became possible in the previous work by using new chloro-carbon epitaxial growth method. However, it was established that even in the new process, homogenous nucleation of Si in the gas phase limited the growth rate. In the present work, new chlorinated silicon precursor SiCl4 was investigated as a replacement for the traditional silicon precursor SiH4 during the low-temperature chlorocarbon epitaxial growth. The new process completely eliminated the homogenous nucleation in the gas phase. Growth rate of 5-6 μm/h was achieved at 1300°C compared to less than 3 μm/h in the SiH4-based growth. The growth dependence on the C/Si ratio revealed that the transition from the C-supply-limited to the Si-supply-limited growth mode takes place at the value of the C/Si ratio much higher than unity, suggesting that certain carbon-containing species are favorably excluded from the surface reactions in the new process. Morphology degradation mechanisms, which are unique for the lowtemperature growth, were observed outside the established process window. Prior to this work, it remained unclear if CH3Cl simply served as a source of Cl to suppress homogeneous nucleation in the gas phase, or if it brought some other unknown improvements. In this work true benefits of CH3Cl in providing unique improvement mechanisms have been revealed. It was established that CH3Cl provided a much wider process window compared to C3H8. In contrast, even a very significant supply of extra Cl from a chlorinated silicon precursor or from HCl during the C3H8-based growth could not provide a similar benefit. The combination of the chloro-carbon and the chloro-silane precursors was also investigated at conventional growth temperature. High-quality thick epitaxial layers, with the growth rate up to 100μm/h were obtained, and the factors influencing the growth rate and morphology were investigated. Extensive optical and electrical characterization of the low-temperature and the regular-temperature epitaxial layers was conducted. The device-quality of the lowtemperature chloro-carbon epilayers was validated for the first time since the development of the chloro-carbon epitaxial process in the year 2005 by fabricating simple Schottky diodes and investigating their electrical characteristics.
|
Page generated in 0.0285 seconds