• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 137
  • 51
  • 25
  • 21
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 284
  • 284
  • 256
  • 60
  • 59
  • 54
  • 50
  • 41
  • 40
  • 38
  • 37
  • 33
  • 32
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Impédance locale dans une pile à membrane H2/air (PEMFC) : études théoriques et expérimentales / Local impedance in H2/air Proton Exchange Membrane Fuel Cells (PEMFC) : theoretical and experimental investigations

Mainka, Julia 04 July 2011 (has links)
Cette thèse apporte des éléments de compréhension de la boucle basse fréquence des spectres d'impédance de PEMFC H2/air. Différentes expressions de l'impédance de transport de l'oxygène alternatives à l'élément de Warburg sont proposées. Elles prennent en compte des phénomènes de transport dans les directions perpendiculaire et parallèle à l'électrode qui sont habituellement négligés: convection à travers la GDL et le long du canal d'air, résistance protonique de la couche catalytique et appauvrissement en oxygène entre l'entrée et la sortie de la cellule. Une attention particulière est portée sur les oscillations de concentration induites par le signal de mesure qui se propagent le long du canal d'air. Ces différentes expressions de l'impédance de transport de l'oxygène sont utilisées dans un circuit électrique équivalent destiné à simuler l'impédance de la cellule. Une comparaison entre résultats expérimentaux et théoriques permet d'identifier les paramètres du circuit électrique. A partir de ces paramètres, il est possible d'analyser les mécanismes physiques et électro-chimiques qui se produisent dans la pile, ainsi que de tirer certaines conclusions sur les phénomènes de transport de l'oxygène dans les milieux poreux de la cathode. Pour cela, nous avons utilité des cellules segmentées et instrumentées conçues et fabriquées au laboratoire / The aim of this Ph.D thesis is to contribute to a better understanding of the low frequency loop in impedance spectra of H2/air fed PEMFC and to bring information about the main origin(s) of the oxygen transport impedance through the porous media of the cathode via locally resolved EIS. Different expressions of the oxygen transport impedance alternative to the one-dimensional finite Warburg element are proposed. They account for phenomena occurring in the directions perpendicular and parallel to the electrode plane that are not considered usually: convection through the GDL and along the channel, finite proton conduction in the catalyst layer, and oxygen depletion between the cathode inlet and outlet. A special interest is brought to the oxygen concentration oscillations induced by the AC measuring signal that propagate along the gas channel and to their impact on the local impedance downstream. These expressions of the oxygen transport impedance are used in an equivalent electrical circuit modeling the impedance of the whole cell. Experimental results are obtained with instrumented and segmented cells designed and built in our group. Their confrontation with numerical results allows to identify parameters characterizing the physical and electrochemical processes in the MEA
182

"Estudo de concretos de alto desempenho frente à ação de cloretos" / Study of high performance concrete subjected to chloride attack

Fernanda Giannotti da Silva 25 May 2006 (has links)
Atualmente, um dos principais problemas ligados às estruturas de concreto armado é a corrosão da armadura, especialmente devido à ação dos íons cloreto. Sua incidência no contexto das principais manifestações patológicas encontradas nas construções é bastante significativa, chegando a atingir índices de 50% em algumas regiões brasileiras. Além disso, o custo do reparo ou da reabilitação das estruturas deterioradas, em alguns casos, pode ser superior ao de uma estrutura nova. Com o objetivo de aumentar a vida útil das estruturas de concreto e diminuir o índice de ocorrência da corrosão de armaduras, esta pesquisa verifica o comportamento de concretos com adições minerais quanto à eficiência na proteção do aço contra a corrosão induzida por íons cloreto, em relação ao concreto sem adição. Para a produção dos concretos de alto desempenho (CAD), foram utilizados dois tipos de adições: a sílica de Fe-Si ou silício metálico (SFS), já comercialmente disponível, e a sílica extraída da casca de arroz (SCA), produzida em laboratório. Assim, além de proporcionar uma barreira física à entrada de agentes agressivos na camada de cobrimento, a utilização desses concretos contribui para a diminuição da poluição ambiental, uma vez que as adições estudadas são resíduos. Para tanto, foram realizados ensaios mecânicos e relacionados à durabilidade, tais como: absorção de água, resistência à penetração de cloretos, frente de penetração, teor total de cloretos e resistividade elétrica dos concretos. Na análise do processo de corrosão, duas técnicas foram empregadas: potencial de corrosão e espectroscopia por impedância eletroquímica. Em relação à microestrutura, foram realizados ensaios de porosimetria por intrusão de mercúrio, difratometria de raios X, termogravimetria e microscopia eletrônica de varredura. Os resultados obtidos no controle da corrosão pelo ataque de íons cloreto foram favoráveis ao uso das adições em substituição ao cimento Portland, uma vez que os concretos com adições superam os resultados obtidos nos concretos sem sílica (ainda que a SFS tenha proporcionado melhor desempenho em algumas propriedades), indicando alta capacidade dos CAD em proteger o aço frente à ação de íons cloreto. Dentre os tipos de cimento utilizados, o CP V ARI RS mostrou-se mais eficiente que o CP V ARI Plus, bem como apresentou melhor sinergia com a SCA. A técnica de espectroscopia eletroquímica pode ser utilizada em CAD, porém deve-se minimizar os efeitos da alta resistividade do material, especialmente quando se utiliza a SFS. / Nowadays, one of the main problems in reinforced concrete structures is steel corrosion, especially due to the action of chloride ions. Its incidence among the main pathologies is quite significant, reaching indexes of 50% in some Brazilian areas. Besides, the cost of repair or rehabilitation of deteriorated structures, in some cases, can be higher than a new structure. To increase the service life of concrete structures and reduce the occurrence of steel corrosion, this work verifies the behavior of concretes with mineral additions in protecting the steel against the corrosion induced by chloride ions, in comparison to concretes without addition. For the production of high performance concretes (HPC), two addition types were used: silica fume (SF), already commercially available, and silica extracted from rice husk (SRH), produced in laboratory. Thus, besides providing a physical barrier to the aggressive agents in the concrete cover, the use of such concretes contribute to decrease the environmental pollution, since the additions studied are residues. Mechanical and durability tests were accomplished, such as water absorption, chloride penetration resistance, chloride penetration depth and concentration and electric resistivity of concretes. In the analysis of corrosion process, two techniques were used: open circuit potential and electrochemical impedance spectroscopy. Regarding the microstructure, tests of mercury intrusion porosimetry, X-ray diffraction, termogravimetry and scanning electron microscopy were conducted. The results obtained in the control of steel corrosion by chloride ions were favorable to the use of the additions in substitution to the portland cement. Both concretes with additions showed better performances than the concretes without silica, indicating high capacity of HPC to protect against the steel corrosion in reinforced concrete structures. Concerning the types of cement used, CP V ARI RS showed to be more efficient than CP V ARI Plus and presented better synergy with SRH. The electrochemical impedance spectroscopy technique can be used in HPC, however the effects of the high resistivity of the material should be minimized, especially when silica fume is used.
183

Impedimetric and electrode kinetic dynamics of DNA aptamer nanobiosensors for estrogeneous endocrine disruptors

Olowu, Rasaq Adewale January 2011 (has links)
Philosophiae Doctor - PhD / In this work, DNA aptamer biosensor systems were developed for the detection of l7p-estradiol - an estrogeneous endocrine disrupting chemical (EDC). Endocrine disrupting chemicals are group of compounds that impact negatively on the endocrine system of humans and wildlife. High concentrations of l7p-estradiol in water or food chain disrupts the physiology of the endocrine system of various animal species, leading to feminisation in fish and stimulates the proliferation of cancer cells in humans. Aptasensor systems for the determination of l7pestradiol were prepared with three immobilization platforms: (i) poly(3,4- ethylenedioxythiophene) {PEDOT} doped with gold nanoparticles (AuNPs) to form PEDOTIAuNPs polymeric nanocomposite, (ii) generation 1 poly(propylene thiophenoimine)-copoly( 3 ,4-ethy lenedioxythiophene) dendritic star copolymer (G 1PPT -co-PEDOT), and (iii) generation 2 poly (propylene thiophenoimine)-co-poly(3,4-ethylenedioxythiophene) dendritic star copolymer (G2PPT-co-PEDOT). The morphological properties of the sensor platforms were interrogated by scanning emission microscopy (SEM) and atomic force microscopy (AFM), while their spectroscopic characteristics were studied by Fourier transform infra red spectroscopy (FTIR) and fluorescence spectroscopy. The electrochemical behaviour of the platforms and the aptasensors were studied by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV). The DNA aptamer developed for detecting 17~-estradiol and which was used in the fabrication of all aptamer biosensors in this study is a 76-mer biotinylated aptamer (5'-BiotinGCTTCCAGCTTATTGAATTACACGCAGAGG TAGCGGCTCTGCGCATTCAATGCTGCGCGCTGAAGCGCGGAAGC-3'). AulPEDOTIAuNPslAptamer (platform 1) was obtained by covalently attaching streptavidin to the polymeric nanocomposite platform using carbodiimide chemistry and the aptamer immobilized via streptavidin-biotin interaction. The electrochemical signal generated from the aptamer-target molecule interaction was monitored electrochemically using cyclic voltammetry and square wave voltammetry in the presence of [Fe(CN)6J 3-/4- as a redox probe. The signal current observed was inversely proportional to the concentration of 17Bestradiol. The aptasensor demonstrated specificity toward 17~-estradiol. The detectable concentration range of the 17B estradiol was 0.01 nM-O .09 nM with a detection limit of 3.2 pM. The 76-mer biotinylated aptamer for 17~-estradiol was incorporated into a generation 1 poly(propylenethiophenoimine )-co-poly(3 ,4-ethylenedioxythiophene) dendritic star copolymer modified Au electrode via biotin-avidin interaction (platform 2). The Bode plot shows that the charge transfer dynamics of the nanoelectrode can be frequency modulated while the AulG 1PPTco- PEDOT nanoelectrode exhibited greater semi-conductor behavior (higher phase angle value) than AulG 1PPT due to the incorporation of charged functionalized dendrimer at low frequencies (100 mHz). The biosensor response to 17~-estradiol was based on the decrease in the SWV current as the EDC binds to the ssDNA aptamer on the biosensor. The dynamic linear range of the sensor was 0.01-0.07 nM with a detection limit of7.27 pM. Synthesis of electro synthetic generation G2PPT-co-PEDOT (platform 3) was performed by copolymerization of PEDOT with G2PPT dendrimer modified electrode immersed in a solution of 0.1 M LiCI04 containing 0.1 M EDOT monomer and 0.1 M sodium dodecyl sulphate (SDS) for ten (10) cycles. The electrochemical behaviour of the dendritic star copolymer was investigated with CV and EIS in LiCI04 and phosphate buffer solutions. The results show that the electrochemical deposition of G2PPT-co-PEDOT on gold electrode decreased the electrochemical charge transfer resistance when compared to AuiPEDOTILiCI04 and AuiLiCI04 interfaces. Bode impedimetric analysis indicates that G2PPT-co-PEDOT is a semiconductor. The fabrication of two novel aptasensors (based on platforms 2 and 3) simultaneously on a screen printed micro array electrode of 96-well multichannel electrochemical robotic sensor testing system for the detection of endocrine disrupting l7~-estradiol, was also carried out. The aptasensors responses to l7~-estradiol, based on the decrease in the SWV current, were evaluated.
184

Příprava a charakterizace konverzních fluoridových povlaků na biodegradabilních hořčíkových slitinách / Preparation and Characterization of Fluoride Conversion Coatings on Biodegradable Magnesium Alloys

Drábiková, Juliána January 2018 (has links)
The submitted work is aimed at the unconventional fluoride conversation coating preparation on the AZ31, AZ61, ZE10 and ZE41 magnesium alloys by their immersion in Na[BF4] molten salt. The influence of the preparation parameters (such as temperature and time) on the quality of the fluoride conversion coating is investigated. Methods of light and scanning electron microscopy were used for the evaluation of morphology, chemical composition and thickness of the coating. Short and long-term corrosion tests were executed to analyze the corrosion performance in simulated body fluid solution at 37 ± 2 °C with and without the fluoride conversion coating. The short-term behavior was evaluated by potentiodynamic tests, namely by the linear polarization. Long-term performance was assessed by electrochemical impedance spectroscopy or immersion tests. The coating preparation parameters influence on the character of the formed fluoride conversion coating was defined based on the obtained results. The next part of the thesis deals with the description of the possible mechanism of formation and kinetics of growth of the unconventional fluoride conversion coating on the selected AZ61 magnesium alloy. In this part, further detailed analyses were carried out to investigate the microstructure and chemical composition of the fluoride conversion coating using focused ion beam, transmission electron microscopy and X-ray photoelectron spectroscopy.
185

Výzkum interkalačních vlastností elektrodových materiálů založených na expandovaném grafitu / Study of intercalation properties of electrode materials based on expanded graphite

Vencelides, Lukáš January 2020 (has links)
The diploma thesis deals with the issue of electrochemical cells and deals in detail with lithium-ion batteries. The thesis describes the history of development of lithium-ion batteries, basic information about lithium and basic types of electrochemical cells. The work is devoted in detail to the description of characteristics and operating principle of lithium-ion batteries with emphasis on the negative electrode and negative electrode materials. Of the negative electrode materials, both the most widely used material graphite and modern materials with a great potential for the future are described. In the measurement methods the work describes methods CV, GCPL and EIS. Great emphasis is placed on the explanation of the principle of the function of electrochemical impedance spectroscopy and its application in measurement of electrochemical properties of materials used in lithium-ion batteries. There is also described the procedure of calculation of diffusion coefficients using the results of electrochemical impedance spectroscopy. In the practical part, two methods are used to calculate the diffusion coefficients of lithium ions into the negative electrode made of expanded flake graphite using the results of a series of electrochemical measurements.
186

Electrochemical responses of novel preferentially oriented platinum (100) nanoalloys for ammonia and hydrazine catalysis

Mailu, Stephen Nzioki January 2013 (has links)
Philosophiae Doctor - PhD / Ammonia has attracted attention as a possible fuel for direct fuel cells since it is easy to handle under low pressure, costs only slightly higher than methanol and can easily be cracked down into hydrogen and nitrogen. At low temperature, ammonia oxidation on noble metal electrodes is a sluggish reaction and efficient catalysts are required to convert ammonia to nitrogen and hydrogen at reasonable reaction rates. In this thesis, I present polycrystalline and oriented nanoalloys synthesised at room temperature in aqueous media and their catalytic effects on the oxidation of ammonia. The electro-oxidation of ammonia on palladium-goldsilver (PdAuAgNPs) ternary nanoalloys was systematically studied in alkaline solution of potassium hydroxide (KOH) by cyclic voltammetry (CV). The PdAuAg nanoalloys were prepared through a facile synthesis with ascorbic acid as a reductant and polyvinylpyrrolidone (PVP) as a stabilising agent from aqueous solutions of PdCh/HAuCI4.3H20/AgN03 mixtures. UV-visible spectroscopy was used to confirm the complete reduction of the metal ions; absorption peaks observed at 260 nm, 285 nm and 420 nm for Ag", Au3+ and Pd2+ ions respectively, disappeared after reduction indicating a complete reduction of the metal ions to zero-valent nanoparticles. High resolution transmission electron microscopy (HR TEM) revealed the formation of crystalline nonaggregated 25-35 nm sized nanoalloys. The elemental composition of the nanoalloys measured using energy dispersive X-ray spectroscopy (EDX) showed the presence of the three elements; Pd, Au and Ag. The well-dispersed non-agglomerated PdAuAg nanoalloys exhibited a reduced overpotential and a 33%, 400%,82% and 54% increase in current density for ammonia electro-oxidation compared to Pd, PdAg, PdAu nanoparticles and bare Pt electrode, respectively. The much improved current density of the well-dispersed PdAuAg nanoalloys is attributed to the increased electrochemically active surface area of the nanoalloys. This electro catalytic behaviour of the PdAuAg nanoalloys for ammonia oxidation in KOH solutions provides a promising route for development of low-cost and high performance electro catalyst for electro-oxidation of ammoniaMoreover, ammonia oxidation on platinum surfaces has been found to be a very structure sensitive reaction which takes place almost exclusively on Pt(100) surfaces. I report for the first time the preparation of sodium polyacrylate-capped Pt(100)Pd, pte 1OO)Au, pte 1OO)Ir, Pt(IOO)Rh, Pt(100)PdAu, Pt(100)IrAu, Pt(IOO)PdIr and Pt(IOO)RhAu nanoalloys. The reduction of the metal ions to nanoparticles was confirmed by UV-visible spectroscopy while the shapes and the structures of the nanoparticles were studied using HRTEM and CV. HRTEM analysis showed well distributed non-agglomerated 5-20 nm semi-spherical and cubic nanoalloys with lattice fridges on their surfaces indicating the crystalline nature of the nanoalloys. Pt(100) nanoalloy systems showed particles with triangular and cubic shapes. The existence of the preferentially cubic shaped nanoparticles in the samples indicated that the nanoalloys had some (100) sites orientation/a significant amount of (100) sites at their surfaces. The CV of the nanoparticles in the hydrogen adsorption/desorption region (-200 mV to 100 mV vs. Ag! AgCl) was used to obtain qualitative information about the surface structure of the nanoparticles. The voltammogram of oriented Pt(100) nanoparticles showed very clearly the presence of adsorption states associated with (110) sites, (100) domains and (l00) sites at -131 mV, -34 mV and 29 mV, respectively. The companson of this voltammetric profile with that obtained for a Pt(100) single crystal electrode clearly points out that the synthesised Pt nanoparticles have a high density of (100) sites. However, the peak that was observed at 29 mV in the CV of Pt(100) nanoparticles was not present in the vo ltammo grams of the Pt(100) nanoalloy systems confirming the formation of the nanoalloys. The results reported in this work demonstrate the importance of controlling the intrinsic structural properties of Pt nanoparticles; in terms of nature of the active sites and the effect of adding adatoms (such as Au, Pd, Rh, Ir) in order to understand their catalytic properties. The electrochemical activities of these nanoparticles for ammonia oxidation in basic medium showed an increase of over 100% current density compared to Pt electrode. Pt(lOO)RhAu nanoalloys showed the highest catalytic properties while Pt(lOO)PdAu had the lowest as shown in the trend: Pt(lOO)RhAu > Pt(lOO)PdIr > Pt(lOO) > Pt(lOO)IrAu > Pt(lOO)Pd> Pt(lOO)Rh > Pt(lOO)Au > Pt(lOO)Ir > Pt(lOO)PdAu. The synthesised oriented nanoalloys were further interrogated towards the oxidation of hydrazine as a fuel for hydrazine fuel cells. The oriented Pt(lOO) nanoparticles and Pt(lOO) nanoalloy systems exhibited over 1000% increase in current density and reduced oxidation overpotential compared to bare glassy carbon electrode. These excellent catalytic properties are attributed to the increased surface area and the presence of (100) sites which favour the oxidation of hydrazine.
187

Elektrochemické charakteristiky hořčíkových slitin AZ31 a AZ61 v Hankových roztocích / Electrochemical characteristics of AZ31 and AZ61 magnesium alloys in Hanks‘ solutions

Minda, Jozef January 2015 (has links)
This thesis deals with the characterization of electrochemical corrosion properties of magnesium alloys as promising materials for biomedical applications. The wrought alloys AZ31 and AZ61 were used and exposed to corrosive environments of Hanks solutions (SBF) to simulate environmental conditions in living organisms. For the evaluation of the surfaces was used scanning electron microscopy (SEM) with elemental analysis measured by energy-dispersive spectroscopy (EDS). Short-term (5 min) and long-term (72 h) corrosion tests were conducted in order to optimize the measurement methodology and obtain corrosion parameters - especially corrosion potential (Ekor), corrosion current density (ikor) and polarisation resistance (RP). To evaluation of the short-term tests were by potentiodynamic tests, namely the linear polarization (LP) test. Long-term tests were measured by electrochemical impedance spectroscopy (EIS). Effects of the composition of the alloys (AZ31 and AZ61), surface treatment (grinding and polishing) and the composition of the solution (SBF without Ca, Mg, and with Ca, Mg) were compared. Complex corrosion behaviour in time was characterized and corrosion mechanisms were discussed.
188

Superkondenzátory s kapalnými aprotickými elektrolyty / Liquid electrolytes for supercapacitors

Bill, Jan January 2008 (has links)
This work deals with the preparation of liquid electrolytes from different types of aprotic solvents with the aim of their application as electrolytes in electrochemical supercapacitors. Different sorts of aprotic solvents have been chosen, in which the following forms of salts were used: LiBF4, LiClO4,LiPF6. In the next part of the work, the properties of these solvents were measured and the best electrolyte, according to the biggest possible capacity of the system, was chosen. In the theoretical part of this work, the physical principle of supercapacitors and their propeties are described. It deals with electrolytes, their division and with the properties that are appropriate for supercapacitors. The experimental part of the work describes the process of preparation of the samples of electrodes, electrolytes and the techniques of measuring their capacities.
189

Zlepšování užitných vlastností olověného akumulátoru / Improving of use properties of lead-acid accumulator

Szabó, Jaroslav January 2011 (has links)
Lead-acid accumulators are the oldest and most common type of secondary cells. There are still some problems to solve. Grid corrosion in sulphuric acid is one of them, which reduced lifetime of lead-acid accumulators. The first part of work is focusing on a general theoretic description of lead – acid accumulators. Following is a description of the workstation and method of measuring. The final part of the text is measuring on an experimental cell.
190

Modul elektrochemické impedanční spektroskopie pro výzkum vodíkových palivových článků / Measurement module based on electrochemical impedance spectroscopy intended for hydrogen fuel cell research

Přecechtěl, Vít January 2015 (has links)
This thesis deals with diagnostic fuel-cell parameters using electrochemical impedance spectroscopy. The document begins with brief explanation of fuel-cell operation and its basic principles. Thesis continues with description of fuel-cell voltage generation and influence of charge dual-layer on impedance. After that electrochemical impedance spectroscopy, signals used for perturbation and evaluation of impedance spectrum using Bode a Nyquist plot is described. Next part explains measurement of impedance spectrum using potentiostat in combination with lock-in amplifier or frequency response analyzer. Practical part of thesis is dedicated to electric circuit design of EIS module and software designed for automatic measurement of impedance spectrum. Last part shows results of EIS module testing.

Page generated in 0.0563 seconds