• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • Tagged with
  • 14
  • 14
  • 14
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing Interactions of Ionic Liquid Based Electrolytes with Electrospun Gas Diffusion Electrode Frameworks by 1H PFG NMR

Merz, Steffen, Jakes, Peter, Tempel, Hermann, Weinrich, Henning, Kungl, Hans, Eichel, Rüdiger-A., Granwehr, Josef 11 September 2018 (has links)
Pulsed field gradient (PFG) 1H NMR was used to characterize the mobility of ionic liquid cations in porous gas diffusion electrode (GDE) frameworks for metal–air electrochemical systems. The carbon GDE frameworks were produced by electrospinning. It was found that the motion of ionic liquids in the highly porous hosts is more complex than what is commonly exhibited by conventional fluids, which makes a multimodal investigation essential for an adequate description of mobility and wetting of GDEs. Observed NMR diffraction-like patterns cannot be linked to the tortuosity limit but may serve as a proxy for structural features in the fibrous material. While the observed data were interpreted using standard theoretical models, alternative explanations and causes for artifacts are discussed.
2

Fundamental Studies on Local Reactions in Bifunctional Air Electrodes / 二機能性空気極における局所反応に関する基礎的研究

Ikezawa, Atsunori 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21121号 / 工博第4485号 / 新制||工||1697(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 阿部 竜, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
3

Hydrophobic, Carbon Free Gas Diffusion Electrode for Alkaline Applications

Bekisch, Artur, Skadell, Karl, Poppitz, David, Schulz, Matthias, Weidl, Roland, Stelter, Michael 27 April 2023 (has links)
In this work we present a carbon free gas diffusion electrode (GDE) design. It is a first step towards improvement of technologies like alkaline fuel cells, some alkaline electrolyzes and metal-air-batteries by circumventing carbon degradation. A nickel-mesh was made hydrophobic and subsequently electrochemically coated with MnOx as electrocatalyst. By this, a carbon free GDE was prepared. The contact angle, specific surface area (BET), pore size distribution, crystal phase (XRD) and electrochemical properties were determined. The deposition scan rate (rscan) during dynamic MnOx deposition altered the macro surface structure, pore size distribution and deposited mass. High catalyst masses with high specific surface area were achieved by lower rscan, but hydrophobicity was decreased. Impedance spectroscopy showed that higher MnOx mass will increase the ohmic resistance, because of the low conductivity of oxides, such as MnOx. The diffusion of dissolved oxygen is the major contributor to the total resistance. However, the polarization resistance was reduced by increased specific surface area of MnOx. It was concluded that the ORR and OER are limited by diffusion in this design but nevertheless showed reasonable activity for ±10 mA cm−2 corresponding to ∼8 Ω cm−2 while references exhibited ∼3.5 Ω cm−2 .
4

Electrochemical Manufacturing of Hydrocarbons from Carbon Dioxide Feedstock

Zhang, Tianyu 24 May 2022 (has links)
No description available.
5

Estudo da degradação do trimetoprim e do sulfametoxazol utilizando peróxido de hidrogênio (H2O2) eletrogerado por eletrodos de difusão gasosa (EDG) / Study of degradation of trimethoprim and sulfamethoxazole using hydrogen peroxide (H2O2) eletrogenerated by gas diffusion electrodes

Fernando Lindo Silva 25 February 2013 (has links)
Atualmente a classe dos antibióticos se destaca pelo grande consumo e também pelo risco à saúde quando administrado de forma equivocada, esse aumento deve-se ao destaque cada vez maior da indústria de produtos farmacêuticos. Outra questão a ser levantada é a contaminação do meio ambiente por essa classe substâncias, pois após o uso pelo ser humano ocorre a eliminação natural de parte da concentração administrada, assim sendo liberadas nos esgotos e, posteriormente, contaminando os corpos d\'água, a fauna e flora local. Assim, foi proposto um métodos diferente para a degradação desses compostos, utilizando a eletrodos de difusão gasosa (EDG) capazes de gerar peróxido de hidrogênio in situ e em meio ácido, precursores dos radicais hidroxila, responsáveis pela degradação. Foram estudados EDG\'s não catalisados e catalisados, com diferentes porcentagens de ftalocianina de ferro II, com relação à quantidade de peróxido produzido, melhor potencial de produção e cinética do processo. Os resultados revelaram que a incorporação de 0,5% de Ft-Fe no eletrodo apresentou os melhores resultados. Esse eletrodo foi escolhido então para realizar as degradações dos antibióticos sulfametoxazol e trimetoprim. Na célula eletroquímica utilizou-se o processo Fenton, as reações ocorreram em uma faixa de potencial (-0,4 V ≤ E ≤ -1,4 V) e no reator foi utilizado um potencial fixo (-1,75 V) mas utilizando processos de Fenton e Foto-Fenton. As amostras degradadas foram avaliadas por técnicas analíticas de espectroscopia no ultravioleta (UV), cromatografia líquida de alta eficiência (HPLC) e teor de carbono orgânico total (TOC). Os resultados mostraram que, na célula eletroquímica, o melhor potencial de degradação foi de -1,1 V, com uma taxa de redução de 25,5% para o trimetoprim e 96,0% do sulfametoxazol e uma diminuição do teor de carbono orgânico total de 10,4%. Para o reator o melhor resultado foi obtido para o processo de Foto-Fenton onde houve uma redução de 16,9% do teor de carbono orgânico total e uma redução de 99,7% do sulfametoxazol e 11,3% do trimetoprim, em um potencial de -1,75 V. Considerando a formação de subprodutos foi elaborada uma rota de degradação com os possíveis compostos formados. / Currently the class of antibiotics is notable for the large consumption and also the risk to health when administered in error, this increase is due to the growing prominence of the pharmaceutical industry. Another issue to be addressed is the environmental contamination by substances that class, because after use by humans part of the concentration administered is naturally eliminated, thus being released into sewers and subsequently contaminating water bodies, the local fauna and flora. Thus, different methods has been proposed for the degradation of these compounds, using gas diffusion electrodes (GDE) capable of generating hydrogen peroxide in situ and in acid medium, precursors of hydroxyl radicals, responsible for degradation. We studied GDE\'s not catalyzed and catalyzed with different percentages of iron phthalocyanine II, with respect to the amount of peroxide produced better yield potential and kinetic process. The results revealed that the incorporation of 0.5% of Ft-Fe in the electrode showed the best results. This electrode was then chosen to perform the degradation of the antibiotic sulfamethoxazole and trimethoprim. In the electrochemical cell used in the Fenton process, the reactions occurred in a potential range (-0.4 V ≤ E ≤ -1.4 V) and in the reactor was used a fixed potential (-1.75 V) but using Fenton and photo-Fenton processes. Degraded samples were analyzed by analytical techniques, ultraviolet spectroscopy (UV), high performance liquid chromatography (HPLC) and total organic carbon content (TOC). The results showed that in the electrochemical cell, the best degradation potential was -1.1 V, with a reduction rate of 25.5% for trimethoprim and 96.0% for sulfamethoxazole and a decreased carbon content total of 10.4%. For the reactor the best result was obtained for the photo-Fenton process where there was a reduction of 16.9% of the total organic carbon content and a reduction of 99.7% of sulfamethoxazole and 11.3% of trimethoprim, in a potential of -1.75 V. Considering the formation of byproducts was drafted a route with the possible degradation compounds formed.
6

Estudo da degradação do trimetoprim e do sulfametoxazol utilizando peróxido de hidrogênio (H2O2) eletrogerado por eletrodos de difusão gasosa (EDG) / Study of degradation of trimethoprim and sulfamethoxazole using hydrogen peroxide (H2O2) eletrogenerated by gas diffusion electrodes

Silva, Fernando Lindo 25 February 2013 (has links)
Atualmente a classe dos antibióticos se destaca pelo grande consumo e também pelo risco à saúde quando administrado de forma equivocada, esse aumento deve-se ao destaque cada vez maior da indústria de produtos farmacêuticos. Outra questão a ser levantada é a contaminação do meio ambiente por essa classe substâncias, pois após o uso pelo ser humano ocorre a eliminação natural de parte da concentração administrada, assim sendo liberadas nos esgotos e, posteriormente, contaminando os corpos d\'água, a fauna e flora local. Assim, foi proposto um métodos diferente para a degradação desses compostos, utilizando a eletrodos de difusão gasosa (EDG) capazes de gerar peróxido de hidrogênio in situ e em meio ácido, precursores dos radicais hidroxila, responsáveis pela degradação. Foram estudados EDG\'s não catalisados e catalisados, com diferentes porcentagens de ftalocianina de ferro II, com relação à quantidade de peróxido produzido, melhor potencial de produção e cinética do processo. Os resultados revelaram que a incorporação de 0,5% de Ft-Fe no eletrodo apresentou os melhores resultados. Esse eletrodo foi escolhido então para realizar as degradações dos antibióticos sulfametoxazol e trimetoprim. Na célula eletroquímica utilizou-se o processo Fenton, as reações ocorreram em uma faixa de potencial (-0,4 V ≤ E ≤ -1,4 V) e no reator foi utilizado um potencial fixo (-1,75 V) mas utilizando processos de Fenton e Foto-Fenton. As amostras degradadas foram avaliadas por técnicas analíticas de espectroscopia no ultravioleta (UV), cromatografia líquida de alta eficiência (HPLC) e teor de carbono orgânico total (TOC). Os resultados mostraram que, na célula eletroquímica, o melhor potencial de degradação foi de -1,1 V, com uma taxa de redução de 25,5% para o trimetoprim e 96,0% do sulfametoxazol e uma diminuição do teor de carbono orgânico total de 10,4%. Para o reator o melhor resultado foi obtido para o processo de Foto-Fenton onde houve uma redução de 16,9% do teor de carbono orgânico total e uma redução de 99,7% do sulfametoxazol e 11,3% do trimetoprim, em um potencial de -1,75 V. Considerando a formação de subprodutos foi elaborada uma rota de degradação com os possíveis compostos formados. / Currently the class of antibiotics is notable for the large consumption and also the risk to health when administered in error, this increase is due to the growing prominence of the pharmaceutical industry. Another issue to be addressed is the environmental contamination by substances that class, because after use by humans part of the concentration administered is naturally eliminated, thus being released into sewers and subsequently contaminating water bodies, the local fauna and flora. Thus, different methods has been proposed for the degradation of these compounds, using gas diffusion electrodes (GDE) capable of generating hydrogen peroxide in situ and in acid medium, precursors of hydroxyl radicals, responsible for degradation. We studied GDE\'s not catalyzed and catalyzed with different percentages of iron phthalocyanine II, with respect to the amount of peroxide produced better yield potential and kinetic process. The results revealed that the incorporation of 0.5% of Ft-Fe in the electrode showed the best results. This electrode was then chosen to perform the degradation of the antibiotic sulfamethoxazole and trimethoprim. In the electrochemical cell used in the Fenton process, the reactions occurred in a potential range (-0.4 V ≤ E ≤ -1.4 V) and in the reactor was used a fixed potential (-1.75 V) but using Fenton and photo-Fenton processes. Degraded samples were analyzed by analytical techniques, ultraviolet spectroscopy (UV), high performance liquid chromatography (HPLC) and total organic carbon content (TOC). The results showed that in the electrochemical cell, the best degradation potential was -1.1 V, with a reduction rate of 25.5% for trimethoprim and 96.0% for sulfamethoxazole and a decreased carbon content total of 10.4%. For the reactor the best result was obtained for the photo-Fenton process where there was a reduction of 16.9% of the total organic carbon content and a reduction of 99.7% of sulfamethoxazole and 11.3% of trimethoprim, in a potential of -1.75 V. Considering the formation of byproducts was drafted a route with the possible degradation compounds formed.
7

Degradação eletroquímica dos corantes alimentícios amaranto e tartrazina utilizando H2O2 eletrogerado in situ em eletrodo de difusão gasosa (EDG) modificado com ftalocianina de cobalto (II) e cobre (II) / Electrochemical degradation of the amaranth and tartrazine food dyes using H2O2 electrogenerated in situ in modified gas diffusion electrode(GDE) with copper (II) and cobalt (II) phthalocyanine

Barros, Willyam Róger Padilha 14 August 2014 (has links)
Este trabalho descreve o estudo da geração eletroquímica do H2O2 em eletrólito ácido (H2SO4 (0,1 mol L-1) + K2SO4 (0,1 mol L-1)) e eletrólito alcalino (KOH 1,0 mol L-1) utilizando eletrodo de difusão gasosa (EDG), sendo este fabricado com carbono Printex 6L e modificado com 3,0; 5,0 e 10,0% de ftalocianina de cobalto (II) ou cobre (II). Os experimentos foram realizados em uma célula eletroquímica de compartimento único contendo eletrodo de referência Ag/AgCl, contra eletrodo de Pt e como eletrodo de trabalho foi utilizado o EDG. Nos testes de eletrólise a potencial constante (-0,4 V ≤ E ≤ -1,4 V) durante 90 minutos com O2 pressurizado a 0,2 Bar, a concentração de H2O2 alcançou valor máximo de 178 mg L-1 a - 1,0 V (vs. Ag/AgCl) para o EDG não modificado em eletrólito ácido e em eletrólito alcalino, o valor máximo foi de 3.370 mg L-1 a -1,1 V (vs. Ag/AgCl). Quando incorporada a porcentagem de 5,0% de ftalocianina de cobalto (II) à massa do EGD verificou-se que a concentração de H2O2 alcança valor máximo em 331 mg L-1 a -0,7 V (vs. Ag/AgCl), o que representa um aumento de 86,0% no rendimento da produção de H2O2 em meio ácido, além de uma diminuição de 300 mV no potencial aplicado para formação da espécie oxidante. Para o estudo da degradação eletroquímica foram utilizados os corantes amaranto e tartrazina com concentração de 100 mg L-1. Para o estudo do processo eletro-Fenton homogêneo foram utilizados 0,05; 0,1 e 0,15 mmol de Fe2+ ou Fe3+ e para o processo eletro-Fenton heterogêneo em meio alcalino foi utilizado 0,15 mmol das nanopartículas do tipo Fe3-xCuxO4 (0 ≤ x ≤ 0,25). As eletrólises foram realizadas a potencial constante em -0,7 V (vs. Ag/AgCl) no EDG modificado com 5,0% de ftalocianina de cobalto (II) sob fluxo constante de O2 durante 90 minutos no processo eletro-Fenton homogêneo enquanto no processo eletro-Fenton heterogêneo o EDG não modificado foi utilizado e as eletrólises foram realizadas a -1,1 V (vs. Ag/AgCl). Todos os ensaios eletroquímicos foram realizados em um potenciostato PGSTAT- 302 acoplado a um com módulo de alta corrente BSTR-10A e controlado por meio do software GPES (Metrohm Autolab). As nanopartículas Fe3-xCuxO4 (0 ≤ x ≤ 0,25) foram caracterizadas por Análise de Ativação de Neutrons (AAN), DRX, BET, XPS e MET. As amostras dos corantes foram analisadas por espectrofotometria UV/Vis, cromatografia líquida de alta eficiência (CLAE) e teor de carbono orgânico total (COT). Em termos de descoloração, houve uma pequena diminuição no espectro dos corantes quando utilizado H2O2 eletrogerado em meio ácido o que não ocorre na degradação quando utilizado o processo eletro-Fenton homogêneo sendo mais evidente quando utilizado Fe2+, alcançando uma descoloração máxima de 80,0 e 99,2% respectivamente para os corantes amaranto e tartrazina. O decaimento da concentração por CLAE foi bastante eficiente quando utilizado o processo eletro-Fenton, com melhores resultados para Fe2+ e Fe3-xCuxO4 (x= 0,25) sendo a cinética dos processos de pseudo-primeira ordem. Foram identificados os subprodutos formados durante a degradação dos corantes durante o processo eletro-Fenton homogêneo. Os maiores valores de remoção de COT (67,3%) e consumo energético (CE) (370 kwh kg-1 foram obtidos para o processo utilizando íons Fe2+ e as nanopartículas Fe3-xCuxO4 (x=0,25) respectivamente para o corante amaranto. Os valores da concentração de ferro residual solúvel estão dentro do limite permitido segundo a Resolução CONAMA nº 430/2011. Para o processo eletro-Fenton heterogêneo, a concentração de H2O2 residual e consumida diminuiu e aumentou respectivamente com o aumento do valor de \"x\" na espinela da Fe3-xCuxO4 (0 ≤ x ≤ 0,25). / This work describes the electrogeneration of H2O2 study in acidic medium (H2SO4 (0.1 mol L-1) + K2SO4 (0.1 mol L-1)) and alkaline medium (KOH 1.0 mol L-1) using gas diffusion electrode (GDE), being these GDE manufactured with the Printex 6L carbon and modified with percentages of 3.0, 5.0 and 10.0% of cobalt (II) phthalocyanine or copper (II) phthalocyanine. The experiments were performed in an electrochemical cell single compartment containing the reference electrode Ag/AgCl, platinum counter electrode and the working electrode was used the GDE. In tests electrolysis at constant potential (-0.4 V ≤ E ≤ - 1.4 V) for 90 minutes pressurized with O2 at 0.2 Bar, H2O2 concentration reached a maximum value at 178 mg L-1 to -1.0 V (vs. Ag/AgCl) for GDE unmodified in acid electrolyte and alkaline electrolyte, the maximum value was 3,370 mg L-1 at potential -1.1 V (vs. Ag/AgCl).When incorporated percentage of 5.0% of cobalt (II) phthalocyanine to mass GDE, it is verified that the concentration of H2O2 reaches maximum value at 331 mg L-1 at -0.7 V (vs. Ag/AgCl), which represents increase in yield of 86.0% relative to Printex 6L carbon in acidic medium, addition to a decrease of 300 mV at potential applied to the formation of oxidizing species. To study the electrochemical degradation were amaranth and tartrazine dyes with concentration of 100 mg L-1. To study the homogeneous electro-Fenton process were used 0.05; 0.1 e 0.15 mmol de Fe2+ or Fe3+ and to heterogeneous electro-Fenton process in alkaline medium was used 0.15 mmol of Fe3-xCuxO4 (0 ≤ x ≤ 0.25) nanoparticles. The electrolysis were performed at constant potential -0.7 V (vs. Ag/AgCl) in the GDE modified with 5.0% of cobalt (II) phthalocyanine under constant flow of O2 for 90 minutes in the homogeneous electro-Fenton process while in the heterogeneous electro-Fenton process, GDE unmodified was used and the electrolysis were performed at -1.1 V (vs. Ag/AgCl). All electrochemical tests were performed using a potentiostat/galvanostat model PGSTAT 302 coupled to a BSTR-10A current booster and controlled by GPES software (Metrohm Autolab). The Fe3-xCuxO4 (0 ≤ x ≤ 0.25) nanoparticles were characterized by Neutron Activation Analysis (NAA), XRD, BET, XPS and TEM. The samples of the dyes were analyzed by spectrophotometry UV/Vis, high performance liquid chromatography (HPLC) and total organic carbon (TOC). In terms of discoloration, was a small decrease in the spectrum of the dye when used H2O2 in acidic medium which doesn\'t occur in the degradation when used homogeneous electro-Fenton process being more evident when used Fe2+, reaching a maximum discoloration of 80.0 and 99.2% respectively for amaranth and tartrazine dyes. The decay concentration by HPLC was very efficient when using the electro-Fenton process with better results for Fe2+ and Fe3-xCuxO4 (0 ≤ x ≤ 0.25) nanoparticles being the kinetics of the process of pseudo-first order. Were identified by-products formed during the degradation of dyes during the homogeneous electro-Fenton process. The higher values of TOC removal (67.3%) and energy consumption (EC) (370 kWh kg-1) were obtained to process using Fe2+ ions and Fe3-xCuxO4 (x= 0.25) nanoparticle respectively for amaranth dye. The values of residual soluble iron concentrations are within the permissible limit according to CONAMA Resolution nº 430/2011. To the heterogeneous electro-Fenton process, the residual and consumed concentration of H2O2 decreased and increased respectively with increasing value of \"x\" in the spinel of Fe3-xCuxO4 (0 ≤ x ≤ 0.25).
8

Degradação eletroquímica dos corantes alimentícios amaranto e tartrazina utilizando H2O2 eletrogerado in situ em eletrodo de difusão gasosa (EDG) modificado com ftalocianina de cobalto (II) e cobre (II) / Electrochemical degradation of the amaranth and tartrazine food dyes using H2O2 electrogenerated in situ in modified gas diffusion electrode(GDE) with copper (II) and cobalt (II) phthalocyanine

Willyam Róger Padilha Barros 14 August 2014 (has links)
Este trabalho descreve o estudo da geração eletroquímica do H2O2 em eletrólito ácido (H2SO4 (0,1 mol L-1) + K2SO4 (0,1 mol L-1)) e eletrólito alcalino (KOH 1,0 mol L-1) utilizando eletrodo de difusão gasosa (EDG), sendo este fabricado com carbono Printex 6L e modificado com 3,0; 5,0 e 10,0% de ftalocianina de cobalto (II) ou cobre (II). Os experimentos foram realizados em uma célula eletroquímica de compartimento único contendo eletrodo de referência Ag/AgCl, contra eletrodo de Pt e como eletrodo de trabalho foi utilizado o EDG. Nos testes de eletrólise a potencial constante (-0,4 V ≤ E ≤ -1,4 V) durante 90 minutos com O2 pressurizado a 0,2 Bar, a concentração de H2O2 alcançou valor máximo de 178 mg L-1 a - 1,0 V (vs. Ag/AgCl) para o EDG não modificado em eletrólito ácido e em eletrólito alcalino, o valor máximo foi de 3.370 mg L-1 a -1,1 V (vs. Ag/AgCl). Quando incorporada a porcentagem de 5,0% de ftalocianina de cobalto (II) à massa do EGD verificou-se que a concentração de H2O2 alcança valor máximo em 331 mg L-1 a -0,7 V (vs. Ag/AgCl), o que representa um aumento de 86,0% no rendimento da produção de H2O2 em meio ácido, além de uma diminuição de 300 mV no potencial aplicado para formação da espécie oxidante. Para o estudo da degradação eletroquímica foram utilizados os corantes amaranto e tartrazina com concentração de 100 mg L-1. Para o estudo do processo eletro-Fenton homogêneo foram utilizados 0,05; 0,1 e 0,15 mmol de Fe2+ ou Fe3+ e para o processo eletro-Fenton heterogêneo em meio alcalino foi utilizado 0,15 mmol das nanopartículas do tipo Fe3-xCuxO4 (0 ≤ x ≤ 0,25). As eletrólises foram realizadas a potencial constante em -0,7 V (vs. Ag/AgCl) no EDG modificado com 5,0% de ftalocianina de cobalto (II) sob fluxo constante de O2 durante 90 minutos no processo eletro-Fenton homogêneo enquanto no processo eletro-Fenton heterogêneo o EDG não modificado foi utilizado e as eletrólises foram realizadas a -1,1 V (vs. Ag/AgCl). Todos os ensaios eletroquímicos foram realizados em um potenciostato PGSTAT- 302 acoplado a um com módulo de alta corrente BSTR-10A e controlado por meio do software GPES (Metrohm Autolab). As nanopartículas Fe3-xCuxO4 (0 ≤ x ≤ 0,25) foram caracterizadas por Análise de Ativação de Neutrons (AAN), DRX, BET, XPS e MET. As amostras dos corantes foram analisadas por espectrofotometria UV/Vis, cromatografia líquida de alta eficiência (CLAE) e teor de carbono orgânico total (COT). Em termos de descoloração, houve uma pequena diminuição no espectro dos corantes quando utilizado H2O2 eletrogerado em meio ácido o que não ocorre na degradação quando utilizado o processo eletro-Fenton homogêneo sendo mais evidente quando utilizado Fe2+, alcançando uma descoloração máxima de 80,0 e 99,2% respectivamente para os corantes amaranto e tartrazina. O decaimento da concentração por CLAE foi bastante eficiente quando utilizado o processo eletro-Fenton, com melhores resultados para Fe2+ e Fe3-xCuxO4 (x= 0,25) sendo a cinética dos processos de pseudo-primeira ordem. Foram identificados os subprodutos formados durante a degradação dos corantes durante o processo eletro-Fenton homogêneo. Os maiores valores de remoção de COT (67,3%) e consumo energético (CE) (370 kwh kg-1 foram obtidos para o processo utilizando íons Fe2+ e as nanopartículas Fe3-xCuxO4 (x=0,25) respectivamente para o corante amaranto. Os valores da concentração de ferro residual solúvel estão dentro do limite permitido segundo a Resolução CONAMA nº 430/2011. Para o processo eletro-Fenton heterogêneo, a concentração de H2O2 residual e consumida diminuiu e aumentou respectivamente com o aumento do valor de \"x\" na espinela da Fe3-xCuxO4 (0 ≤ x ≤ 0,25). / This work describes the electrogeneration of H2O2 study in acidic medium (H2SO4 (0.1 mol L-1) + K2SO4 (0.1 mol L-1)) and alkaline medium (KOH 1.0 mol L-1) using gas diffusion electrode (GDE), being these GDE manufactured with the Printex 6L carbon and modified with percentages of 3.0, 5.0 and 10.0% of cobalt (II) phthalocyanine or copper (II) phthalocyanine. The experiments were performed in an electrochemical cell single compartment containing the reference electrode Ag/AgCl, platinum counter electrode and the working electrode was used the GDE. In tests electrolysis at constant potential (-0.4 V ≤ E ≤ - 1.4 V) for 90 minutes pressurized with O2 at 0.2 Bar, H2O2 concentration reached a maximum value at 178 mg L-1 to -1.0 V (vs. Ag/AgCl) for GDE unmodified in acid electrolyte and alkaline electrolyte, the maximum value was 3,370 mg L-1 at potential -1.1 V (vs. Ag/AgCl).When incorporated percentage of 5.0% of cobalt (II) phthalocyanine to mass GDE, it is verified that the concentration of H2O2 reaches maximum value at 331 mg L-1 at -0.7 V (vs. Ag/AgCl), which represents increase in yield of 86.0% relative to Printex 6L carbon in acidic medium, addition to a decrease of 300 mV at potential applied to the formation of oxidizing species. To study the electrochemical degradation were amaranth and tartrazine dyes with concentration of 100 mg L-1. To study the homogeneous electro-Fenton process were used 0.05; 0.1 e 0.15 mmol de Fe2+ or Fe3+ and to heterogeneous electro-Fenton process in alkaline medium was used 0.15 mmol of Fe3-xCuxO4 (0 ≤ x ≤ 0.25) nanoparticles. The electrolysis were performed at constant potential -0.7 V (vs. Ag/AgCl) in the GDE modified with 5.0% of cobalt (II) phthalocyanine under constant flow of O2 for 90 minutes in the homogeneous electro-Fenton process while in the heterogeneous electro-Fenton process, GDE unmodified was used and the electrolysis were performed at -1.1 V (vs. Ag/AgCl). All electrochemical tests were performed using a potentiostat/galvanostat model PGSTAT 302 coupled to a BSTR-10A current booster and controlled by GPES software (Metrohm Autolab). The Fe3-xCuxO4 (0 ≤ x ≤ 0.25) nanoparticles were characterized by Neutron Activation Analysis (NAA), XRD, BET, XPS and TEM. The samples of the dyes were analyzed by spectrophotometry UV/Vis, high performance liquid chromatography (HPLC) and total organic carbon (TOC). In terms of discoloration, was a small decrease in the spectrum of the dye when used H2O2 in acidic medium which doesn\'t occur in the degradation when used homogeneous electro-Fenton process being more evident when used Fe2+, reaching a maximum discoloration of 80.0 and 99.2% respectively for amaranth and tartrazine dyes. The decay concentration by HPLC was very efficient when using the electro-Fenton process with better results for Fe2+ and Fe3-xCuxO4 (0 ≤ x ≤ 0.25) nanoparticles being the kinetics of the process of pseudo-first order. Were identified by-products formed during the degradation of dyes during the homogeneous electro-Fenton process. The higher values of TOC removal (67.3%) and energy consumption (EC) (370 kWh kg-1) were obtained to process using Fe2+ ions and Fe3-xCuxO4 (x= 0.25) nanoparticle respectively for amaranth dye. The values of residual soluble iron concentrations are within the permissible limit according to CONAMA Resolution nº 430/2011. To the heterogeneous electro-Fenton process, the residual and consumed concentration of H2O2 decreased and increased respectively with increasing value of \"x\" in the spinel of Fe3-xCuxO4 (0 ≤ x ≤ 0.25).
9

Eletrogeração de peróxido de hidrogênio (H2O2) em eletrodos de difusão gasosa (EDG) modificados com quinonas (metil-p-benzoquinona, antraquinona-2-ácido carboxílico e ácido antraflávico) e azocomposto (Sudan Red 7B) / Electrogeneration of hydrogen peroxide (H2O2) in gas diffusion electrodes (GDE) modified with quinones (methyl-p-benzoquinone, anthraquinone-2-carboxylic acid and anthraflavic acid) and azo compound (Sudan Red 7B)

Juliana Moreira 13 November 2018 (has links)
Os processos oxidativos avançados (POA) são uma alternativa para complementar os processos clássicos de tratamento de efluentes que podem não ser eficientes para remoção de alguns tipos de poluentes como, por exemplo, os poluentes emergentes. Os POA se baseiam na geração de espécies altamente reativas (radicais hidroxila), a partir de peróxido de hidrogênio (H2O2), que oxidam os poluentes. O H2O2 pode ser eletrogerado in situ pela reação de redução de oxigênio (RRO) no meio reacional. O uso de eletrodos de difusão gasosa (EDG) altamente porosos proporciona o suprimento de oxigênio na interface eletrodo/solução podendo aumentar a velocidade da RRO. O uso de modificadores como quinonas e azocompostos imobilizados à matriz de carbono dos EDG podem aumentar a geração de H2O2. Portanto, os modificadores orgânicos Sudan Red 7B (SR7B), metil-p-benzoquinona (MPB), ácido antraflávico (AA) e antraquinona-2-ácido carboxílico (A2CA) foram adicionados em diferentes teores ao carbono Printex L6 (CP) e microcamadas porosas destes materiais foram estudados por voltametria cíclica e de varredura linear em eletrodo de disco-anel rotatório (RRDE). Os materiais contendo 0,5% de SR7B e 5,0% de MPB levaram a aumento na eficiência de geração de H2O2 para 86,2 e 85,5%, respectivamente, em relação ao CP puro que levou a 82,8%. EDG de CP modificados com 0,5% de SR7B foram construídos com telas metálicas em sua faces externas e a aplicação de densidades de corrente de 75, 100 e 150 mA cm-2 levou a uma maior eletrogeração de H2O2. Em densidades de corrente de 75 mA cm-2, o EDG modificado gerou 1020,1 mg L-1 de H2O2 com consumo energético de 118,0 kWh kg-1 de H2O2, constante cinética aparente de 37,3 mg L-1 min-1 e eficiência de corrente de 17,9%, enquanto o EDG de CP puro gerou menor concentração de H2O2; 717, 3 mg L-1, com maior consumo energético; 168,5 kWh kg-1, menor constante cinética aparente; 21,4 mg L-1 min-1, e menor eficiência de corrente; 12,6%. Portanto, o EDG modificado poderia ser empregado em sistemas que precisem de altas gerações de H2O2. / The advanced oxidation processes (AOP) are an alternative to the classical processes of treatment of effluents that may not be effective for the removal of some types of pollutants such as emerging pollutants. The AOP are based on the highly reactive species (hydroxyl radicals) from hydrogen peroxide (H2O2), which oxidize pollutants. H2O2 can be electrogenerated in situ by the oxygen reduction reaction (ORR) in the reaction medium. The use of highly porous gas diffusion electrodes (GDE) provides the supply of oxygen at the electrode/solution interface, which can increase the RRO speed. The use of modifiers such as quinones and azocompounds immobilized on the carbon matrix of GDE may increase H2O2 generation. Therefore, the organic modifiers Sudan Red 7B (SR7B), methyl-p-benzoquinone (MPB), anthraflavic acid (AA) and anthraquinone-2-carboxylic acid (A2CA) were added in different contents to carbon Printex L6 (CP) and microporous layers of these materials were studied by cyclic voltammetry and linear sweep voltammetry on a rotating ring- disc electrode (RRDE). Materials with 0.5% of SR7B and 5.0% of MPB increased the current efficiency for electrogeneration of H2O2 to 86.2 and 85.5%, respectively, in relation to pure CP that leaded to 82.8%. GDE of CP modified with 0.5% of SR7B were constructed with metallic screens on their outer faces and an application of current densities of 75, 100 and 150 mA cm-2 led to a greater electrogeneration of H2O2. At current densities of 75 mA cm-2, the modified GDE generated 1020.1 mg L-1 of H2O2 with energy consumption of 118.0 kWh kg-1 of H2O2, apparent kinetic constant of 37.3 mg L-1 min-1 and current efficiency of 17.9%, while GDE of pure CP generated lower H2O2 concentration; 717, 3 mg L-1, with higher energy consumption; 168.5 kWh kg-1, lower apparent kinetic constant; 21.4 mg L-1 min-1, and lower current efficiency; 12.6%. Therefore, the modified GDE could be applied in systems that require high generations of H2O2.
10

Eletrogeração de peróxido de hidrogênio (H2O2) em eletrodos de difusão gasosa (EDG) modificados com quinonas (metil-p-benzoquinona, antraquinona-2-ácido carboxílico e ácido antraflávico) e azocomposto (Sudan Red 7B) / Electrogeneration of hydrogen peroxide (H2O2) in gas diffusion electrodes (GDE) modified with quinones (methyl-p-benzoquinone, anthraquinone-2-carboxylic acid and anthraflavic acid) and azo compound (Sudan Red 7B)

Moreira, Juliana 13 November 2018 (has links)
Os processos oxidativos avançados (POA) são uma alternativa para complementar os processos clássicos de tratamento de efluentes que podem não ser eficientes para remoção de alguns tipos de poluentes como, por exemplo, os poluentes emergentes. Os POA se baseiam na geração de espécies altamente reativas (radicais hidroxila), a partir de peróxido de hidrogênio (H2O2), que oxidam os poluentes. O H2O2 pode ser eletrogerado in situ pela reação de redução de oxigênio (RRO) no meio reacional. O uso de eletrodos de difusão gasosa (EDG) altamente porosos proporciona o suprimento de oxigênio na interface eletrodo/solução podendo aumentar a velocidade da RRO. O uso de modificadores como quinonas e azocompostos imobilizados à matriz de carbono dos EDG podem aumentar a geração de H2O2. Portanto, os modificadores orgânicos Sudan Red 7B (SR7B), metil-p-benzoquinona (MPB), ácido antraflávico (AA) e antraquinona-2-ácido carboxílico (A2CA) foram adicionados em diferentes teores ao carbono Printex L6 (CP) e microcamadas porosas destes materiais foram estudados por voltametria cíclica e de varredura linear em eletrodo de disco-anel rotatório (RRDE). Os materiais contendo 0,5% de SR7B e 5,0% de MPB levaram a aumento na eficiência de geração de H2O2 para 86,2 e 85,5%, respectivamente, em relação ao CP puro que levou a 82,8%. EDG de CP modificados com 0,5% de SR7B foram construídos com telas metálicas em sua faces externas e a aplicação de densidades de corrente de 75, 100 e 150 mA cm-2 levou a uma maior eletrogeração de H2O2. Em densidades de corrente de 75 mA cm-2, o EDG modificado gerou 1020,1 mg L-1 de H2O2 com consumo energético de 118,0 kWh kg-1 de H2O2, constante cinética aparente de 37,3 mg L-1 min-1 e eficiência de corrente de 17,9%, enquanto o EDG de CP puro gerou menor concentração de H2O2; 717, 3 mg L-1, com maior consumo energético; 168,5 kWh kg-1, menor constante cinética aparente; 21,4 mg L-1 min-1, e menor eficiência de corrente; 12,6%. Portanto, o EDG modificado poderia ser empregado em sistemas que precisem de altas gerações de H2O2. / The advanced oxidation processes (AOP) are an alternative to the classical processes of treatment of effluents that may not be effective for the removal of some types of pollutants such as emerging pollutants. The AOP are based on the highly reactive species (hydroxyl radicals) from hydrogen peroxide (H2O2), which oxidize pollutants. H2O2 can be electrogenerated in situ by the oxygen reduction reaction (ORR) in the reaction medium. The use of highly porous gas diffusion electrodes (GDE) provides the supply of oxygen at the electrode/solution interface, which can increase the RRO speed. The use of modifiers such as quinones and azocompounds immobilized on the carbon matrix of GDE may increase H2O2 generation. Therefore, the organic modifiers Sudan Red 7B (SR7B), methyl-p-benzoquinone (MPB), anthraflavic acid (AA) and anthraquinone-2-carboxylic acid (A2CA) were added in different contents to carbon Printex L6 (CP) and microporous layers of these materials were studied by cyclic voltammetry and linear sweep voltammetry on a rotating ring- disc electrode (RRDE). Materials with 0.5% of SR7B and 5.0% of MPB increased the current efficiency for electrogeneration of H2O2 to 86.2 and 85.5%, respectively, in relation to pure CP that leaded to 82.8%. GDE of CP modified with 0.5% of SR7B were constructed with metallic screens on their outer faces and an application of current densities of 75, 100 and 150 mA cm-2 led to a greater electrogeneration of H2O2. At current densities of 75 mA cm-2, the modified GDE generated 1020.1 mg L-1 of H2O2 with energy consumption of 118.0 kWh kg-1 of H2O2, apparent kinetic constant of 37.3 mg L-1 min-1 and current efficiency of 17.9%, while GDE of pure CP generated lower H2O2 concentration; 717, 3 mg L-1, with higher energy consumption; 168.5 kWh kg-1, lower apparent kinetic constant; 21.4 mg L-1 min-1, and lower current efficiency; 12.6%. Therefore, the modified GDE could be applied in systems that require high generations of H2O2.

Page generated in 0.1248 seconds