• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 58
  • 40
  • 37
  • 13
  • 10
  • 10
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 567
  • 92
  • 56
  • 49
  • 41
  • 39
  • 39
  • 39
  • 38
  • 37
  • 37
  • 36
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Design and Fabrication of Multi – Dimensional RF MEMS Variable Capacitors

Kannan, Hariharasudhan T 14 November 2003 (has links)
In this work, a multi dimensional RF MEMS variable capacitor that utilizes electrostatic actuation is designed and fabricated on a 425um thick silicon substrate. Electrostatic actuation is preferred over other actuation mechanisms due to low power consumption. The RF MEMS variable capacitor is designed in a CPW topology, with multiple beams supported (1 - 7 beams) on a single pedestal. The varactors are fabricated using surface micromachining techniques. A 1um thick silicon monoxide (Er - 6) is used as a dielectric layer for the varactor. The movable membrane is suspended on a 2.5um thick electroplated gold pedestal. The capacitance between the membrane and the bottom electrode increases as the bias voltage between the membrane and the bottom electrode is increased, eventually causing the membrane to snap down at the actuation voltage. For the varactors designed herein, the actuation voltage is approximately 30 - 90V. Full-wave electromagnetic simulations are performed from 1 - 25GHz to accurately predict the frequency response of the varactors. The EM simulations and the measurement results compare favorably. A series RLC equivalent circuit is used to model the varactor and used to extract the parasitics associated with the capacitor by optimizing the model with the measurement results. The measured capacitance ratio is approximately 12:1 with a tuning range from 0.5 - 6pF. Furthermore, the measured S-parameter data is used to extract the unloaded Q of the varactor (at 1GHz) and is found to be 234 in the up state and 27 in the down state. An improved anodic bonding technique to bond high resistivity Si substrate and low alkali borax glass substrate that finds potential application towards packaging of MEMS varactors is investigated. To facilitate the packaging of the varactors the temperature is maintained at 400°C. The bonding time is approximately 7min at an applied voltage of 1KV.
202

Excitation du 201 Hg dans les plasmas produits par laser / 201 Hg excitation in plasma produced by laser

Comet, Maxime 09 December 2014 (has links)
L'utilisation des lasers de puissance permet l'étude des propriétés de la matière dans des conditions extrêmes de température et de densité. En effet, l'interaction d'un laser de puissance sur une cible créée un plasma dont la température est suffisamment grande pour atteindre des degrés d'ionisation élevés. Ces conditions peuvent permettre, via divers processus, d'exciter le noyau dans un état nucléaire et notamment dans un état isomère. Un noyau d'intérêt pour étudier ces phénomènes est le 201 Hg. Ce travail de thèse s'inscrit dans le cadre du dimensionnement d'une expérience visant la mise en évidence de l'excitation du 201 Hg dans un plasma laser.La première partie de ce manuscrit présente la détermination des taux d'excitation nucléaire dans les plasmas. Depuis une dizaine d'années les taux d'excitation sont déterminés en utilisant le modèle de l'atome moyen. Afin de valider ce modèle, un code, appelé ADAM (Au-Delà de l'Atome Moyen), a été développé afin de calculer le taux d'excitation nucléaire en DCA (Detailed Conguration Accounting). Il nous permettra d'en déduire un domaine thermodynamique en température et densité où les taux d'excitation déterminés avec le modèle de l'atome moyen sont pertinents.La deuxième partie présente le couplage des taux d'excitation nucléaire avec un code hydrodynamique afin d'en déduire, pour différentes intensités laser, le nombre de noyaux qu'il serait possible d'exciter par tir laser. Enfin, dans une dernière partie,les premières approches expérimentales qui serviront au dimensionnement d'une expérience sur une installation laser sont présentées. Ces approches sont basées sur la détection et la détermination de la quantité d'ions multichargés obtenue loin de la cible (~80 cm). Pour cela, un déviateur électrostatique a été utilisé. / The use of high power lasers allows the study of the properties of matter in extremeconditions of temperature and density. Indeed, the interaction of a power laser and atarget creates a plasma in which the temperature is high enough to reach important degrees of ionization. These conditions can allow the excitation of the nucleus. Anucleus of interest to study the processes of nuclear excitation is the 201 Hg. Thiswork aims to design an experiment where the 201 Hg excitation will be observed in aplasma produced by a high power laser. The first part of this manuscript presents the calculation of the expected nuclear excitation rates in the plasma. For about ten years, nuclear excitation rates have been calculated using the average atom model. To validate this model a code named ADAM (french acronym for Beyond The Average Atom Model) was developed to calculate the nuclear excitation rates under the DCA (Detailed Configuration Accounting) hypothesis. ADAM allows us to deduce the thermo dynamical domain where the nuclear excitation rates determined with the average atom model are relevant. The second part of this manuscript presents the coupling of the excitation rate calculation with a hydrodynamic code to calculate the number of excited nuclei produced in one laser shot for different laser intensity. Finally, in the last part, first experimental approaches which will be used to design an experiment on a laser installation are presented. These approaches are based on the detection and determination of the amount of multicharged ions obtained far from the target (~80 cm). For this purpose, an electrostatic analyzer was used.
203

Collector current density and dust collection in wire-plate electrostatic precipitators

Yuen, Albert Wai Ling, Materials Science & Engineering, Faculty of Science, UNSW January 2006 (has links)
Even minimal improvements in particle collection efficiency of electrostatic precipitators significantly reduce dust emission from fossil-fuelled power stations and reduce pollution. Yet current designs rely on the Deutsch collection theory, which was developed for tubular precipitators and has been applied to wire-plate precipitators on the assumption that the inter-electrode electric fields at the same discharge distance in both were similar. Differences in geometry and associated collector electric fields and current density non-uniformity have not been taken into account, although the collector electric field and current density of the wire-plate precipitator are not uniform. And observations show that precipitated dust patterns and the distribution of collector current density are interrelated. Investigations revealed a simple square law relationship between the collector electric field and the collector current density in the space charge dominated coronas. Applying this relationship to the Deutsch collection theory led to a current-density-based collection formula that takes into account the non-uniform collector current density distribution. The current-density-based collection formula is then used to assess the impact of collector current density on collection efficiency, the results closely following published measurements. Applying the current-density-based collection formula to estimate the dust accumulation shows that most of the dust accumulates at collector locations facing the corona wires. The effect of the non-uniform precipitated dust layer on collection performance is assessed using the distributed corona impedance - the ratio of the inter-electrode voltage and the non-uniform collector current. Re-distribution of the collector current profile as dust builds up is also compatible with published measurements. Finally this is applied to optimize the wire-plate precipitator collection performance. This shows that optimal collection performance is obtained with the wire-wire spacing less than the wire-plate distance, once again confirming published experimental results. This is the first analytical approach to show better collection performance can be achieved at the ratio of wire-wire spacing/wire-plate distance not equal to unity, which has been the standard industry practice since 1960.
204

Design, fabrication, and testing of a variable focusing micromirror array lens

Cho, Gyoungil 29 August 2005 (has links)
A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs?? surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation of electrostatically actuated micromirrors. The suspension spring, pedestal and electrodes are located under the mirror to maximize the optical efficiency. The micromirror translation and rotation are plotted versus the applied voltage. Relations are provided for the fill-factor and the numerical aperture as functions of the lens diameter, the mirror size, and the tolerances specified by the MUMPs?? design rules. Linnik interferometry is used to measure the translation, rotation, and flatness of a fabricated micromirror. The reflective type Fresnel lens is controlled by independent DC voltages of 16 channels with a 0 to 50V range, and translational and torsional stiffness are calibrated with measured data. The spot diameter of the point source by the fabricated and electrostatically controlled reflective type Fresnel lens is measured to test focusing quality of the lens.
205

Designing Microfluidic Control Components

Wijngaart, Wouter van der January 2002 (has links)
No description available.
206

Investigation of the Feasibility of Manufacturing Solid Oxide Fuel Cell Graded Electrolytes by Suspension Plasma Spraying

Arevalo-Quintero, Olga Lucia 31 August 2012 (has links)
Solid oxide fuel cell compositionally graded electrolytes could offer the advantage of improving electrical performance and efficiency compared to single-layered or bi-layered yttria stabilized zirconia and samaria doped ceria electrolytes and improving mechanical performance by reducing thermal expansion mismatch stresses compared to bi-layered electrolytes with sharp interfaces. Manufacturing of these graded structures is difficult if implementing conventional wet ceramic techniques. Suspension plasma spraying is an emerging technology that has the potential to rapidly produce thin, dense ceramic layers with no requirement for post deposition heat treatments. However, SPS requires a careful examination of the stability of the feedstock suspensions in order to produce high quality coatings. Optimum suspension formulations with excellent particle dispersion were designed based on rheological and electrostatic stability measurements. These optimized suspensions were used as feedstocks for the fabrication of suspension plasma sprayed compositionally graded YSZ/SDC layers. The feasibility of fabricating graded electrolyte structures was thus demonstrated.
207

Investigation of the Feasibility of Manufacturing Solid Oxide Fuel Cell Graded Electrolytes by Suspension Plasma Spraying

Arevalo-Quintero, Olga Lucia 31 August 2012 (has links)
Solid oxide fuel cell compositionally graded electrolytes could offer the advantage of improving electrical performance and efficiency compared to single-layered or bi-layered yttria stabilized zirconia and samaria doped ceria electrolytes and improving mechanical performance by reducing thermal expansion mismatch stresses compared to bi-layered electrolytes with sharp interfaces. Manufacturing of these graded structures is difficult if implementing conventional wet ceramic techniques. Suspension plasma spraying is an emerging technology that has the potential to rapidly produce thin, dense ceramic layers with no requirement for post deposition heat treatments. However, SPS requires a careful examination of the stability of the feedstock suspensions in order to produce high quality coatings. Optimum suspension formulations with excellent particle dispersion were designed based on rheological and electrostatic stability measurements. These optimized suspensions were used as feedstocks for the fabrication of suspension plasma sprayed compositionally graded YSZ/SDC layers. The feasibility of fabricating graded electrolyte structures was thus demonstrated.
208

Using Protein Design to Understand the Role of Electrostatic Interactions on Calcium Binding Affinity and Molecular Recognition

Jones, Lisa Michelle 04 August 2008 (has links)
Calcium regulates many biological processes through interaction with proteins with different conformational, dynamic, and metal binding properties. Previous studies have shown that the electrostatic environment plays a key role in calcium binding affinity. In this research, we aim to dissect the contribution of the electrostatic environment to calcium binding affinity using protein design. Many natural calcium binding proteins undergo large conformational changes upon calcium binding which hampers the study of these proteins. In addition, cooperativity between multiple calcium binding sites makes it difficult to study site-specific binding affinity. The design of a single calcium binding site into a host system eliminates the difficulties that occur in the study of calcium binding affinity. Using a computer algorithm we have rationally designed several calcium binding sites with a pentagonal bipyramidal geometry in the non-calcium dependent cell adhesion protein CD2 (CD2-D1) to better investigate the key factors that affect calcium binding affinity. The first generation proteins are all in varying electrostatic environments. The conformational and metal binding properties of each of these designed proteins were analyzed. The second generation designed protein, CD2.6D79, was designed based on criteria learned from the first generation proteins. This protein contains a novel calcium binding site with ligands all from the â-strands of the non-calcium dependent cell adhesion protein CD2. The resulting protein maintains native secondary and tertiary packing and folding properties. In addition to its selectivity for calcium over other mono and divalent metal ions, it displays strong metal binding affinities for calcium and its analogues terbium and lanthanum. Furthermore, our designed protein binds CD48, the ligand binding partner of CD2, with an affinity three-fold stronger than CD2. The electrostatic potential of the calcium binding site was modified through mutation to facilitate the study of the effect of electrostatic interactions on calcium binding affinity. Several charge distribution mutants display varying metal binding affinities based on their charge, distance to the calcium binding site, and protein stability. This study will provide insight into the key site factors that control calcium binding affinity and calcium dependent biological function.
209

MEMS-enabled micro-electro-discharge machining (M³EDM)

Alla Chaitanya, Chakravarty Reddy 11 1900 (has links)
A MEMS-based micro-electro-discharge machining technique that is enabled by the actuation of micromachined planar electrodes defined on the surfaces of the workpiece is developed that eliminates the need of numerical control machines. First, the planar electrodes actuated by hydrodynamic force is developed. The electrode structures are defined by patterning l8-µm-thick copper foil laminated on the stainless steel workpiece through an intermediate photoresist layer and released by sacrificial etching of the resist layer. The planer electrodes are constructed to be single layer structures without particular features underneath. All the patterning and sacrificial etching steps are performed using dry-film photoresists towards achieving high scalability of the machining technique to large-area applications. A DC voltage of 80-140 V is applied between the electrode and the workpiece through a resistance-capacitance circuit that controls the pulse energy and timing of spark discharges. The parasitic capacitance of the electrode structure is used to form a resistance capacitance circuit for the generation of pulsed spark discharge between the electrode and the workpiece. The suspended electrodes are actuated towards the workpiece using the downflow of dielectric machining fluid, initiating and sustaining the machining process. Micromachining of stainless steel is experimentally demonstrated with the machining voltage of 90V and continuous flow of the fluid at the velocity of 3.4-3.9 m/s, providing removal depth of 20 µm. The experimental results of the electrode actuation match well with the theoretical estimations. Second, the planar electrodes are electrostatically actuated towards workpiece for machining. In addition to the single-layer, this effort uses double-layer structures defined on the bottom surface of the electrode to create custom designed patterns on the workpiece material. The suspended electrode is electrostatically actuated towards the wafer based on the pull-in, resulting in a breakdown, or spark discharge. This instantly lowers the gap voltage, releasing the electrode, and the gap value recovers as the capacitor is charged up through the resistor. Sequential pulses are produced through the self-regulated discharging-charging cycle. Micromachining of the stainless-steel wafer is demonstrated using the electrodes with single-layer and double-layer structures. The experimental results of the dynamic built-capacitance and mechanical behavior of the electrode devices are also analyzed.
210

Modeling and Simulation of an Electrostatic Precipitator Including a Comsol Multiphysics Guide for Modeling an ESP

Ahmad, Muhammad, Jhanzeb, Jhanzeb January 2011 (has links)
Gaseous exhaust of different industries contains dust particles of different chemical precipitates that are harmful for the environment. Electrostatic Precipitators are very often used in industries to filter their gaseous exhaust and to prevent the atmosphere to being polluted. Electrostatic Precipitators are very efficient in their work. Electrostatic Precipitators use the force of the electric field to separate the dust particles from gaseous exhaust. Electrostatic Precipitators charge the dust particles and remove these particles by attracting these charged dust particles toward the collecting plates. The charging of dust particles requires a charging zone. When gas passes through that charging zone, the dust particles in the gas stream become charged and then these charged particles are attracted toward the collecting plates. The design of an Electrostatic Precipitators requires the knowledge of its working principle and the problems that often arise during its working. This thesis is the study of the working and the problems of the Electrostatic Precipitators. The main reason for problems in working of an Electrostatic Precipitator is the dust resistivity. This dust resistivity affects the collection performance of an Electrostatic Precipitator. This thesis also contains the simulation of an Electrostatic Precipitator. In the simulation part, the Electric Potential and the Electric Field of an ESP is modeled in an ideal condition, when no gas is flowing through the ESP. The industrial software Comsol Multiphysics is used for the simulation. A Comsol Multiphysics guide is given in appendix of this thesis report that provides information about using this software.

Page generated in 0.0287 seconds