• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 19
  • 12
  • 11
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 212
  • 29
  • 22
  • 21
  • 20
  • 19
  • 17
  • 16
  • 14
  • 14
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Electrostatics of aerosols for inhalation

Kwok, Philip Chi Lip January 2007 (has links)
PhD / Electrostatics of aerosols for inhalation is a relatively new research area. Charge properties of these particles are largely unknown but electrostatic forces have been proposed to potentially influence lung deposition. Investigation on the relationship between formulation and aerosol charging is required to understand the fundamental mechanisms. A modified electrical low pressure impactor was employed to measure the particles generated from metered dose inhalers and dry powder inhalers. This equipment provides detailed size and charge information of the aerosols. The particles were sized by impaction onto thirteen stages. The net charges in twelve of the size fractions were detected and recorded by sensitive electrometers. The drug deposits were quantified by chemical assay. The aerosol charge profiles of commercial metered dose inhalers were product-dependent, which was due to differences in the drug, formulation, and valve stem material. The calculated number of elementary charges per drug particle of size ≤ 6.06 μm ranged from zero to several ten thousands. The high charge levels on particles may have a potential effect on the deposition of the aerosol particles in the lung when inhaled. New plastic spacers marketed for use with metered dose inhalers were found to possess high surface charges on the internal walls, which was successfully removed by detergent-coating. Detergent-coated spacer had higher drug output than the new ones due to the reduced electrostatic particle deposition inside the spacer. Particles delivered from spacers carried lower inherent charges than those directly from metered dose inhalers. Those with higher charges might be susceptible to electrostatic forces inside the spacers and were thus retained. The electrostatic low pressure impactor was further modified to disperse two commercial Tubuhaler® products at 60 L/min. The DPIs showed drug-specific responses to particle charging at different RHs. The difference in hygroscopicity of the drugs may play a major role. A dual mechanistic charging model was proposed to explain the charging behaviours. The charge levels on drug particles delivered from these inhalers were sufficiently high to potentially affect deposition in the airways when inhaled. Drug-free metered dose inhalers containing HFA-134a and 227 produced highly variable charge profiles but on average the puffs were negatively charged, which was thought to be due to the electronegative fluorine atoms in the HFA molecules. The charges of both HFAs shifted towards neutrality or positive polarity with increasing water content. The spiked water might have increased the electrical conductivity and/or decreased the electronegativity of the bulk propellant solution. The number of elementary charges per droplet decreased with decreasing droplet size. This trend was probably due to the redistribution of charges amongst small droplets following electrostatic fission of a bigger droplet when the Raleigh limit was reached.
122

Simulation Studies of Biological Ion Channels

Corry, Ben Alexander, ben.corry@anu.edu.au January 2003 (has links)
Biological ion channels are responsible for, and regulate the communication system in the body. In this thesis I develop, test and apply theoretical models of ion channels, that can relate their structure to their functional properties. Brownian dynamics simulations are introduced, in which the motions of individual ions are simulated as they move through the channel and in baths attached to each end. The techniques for setting boundary conditions which maintain ion concentrations in the baths and provide a driving potential are tested. Provided the bath size is large enough, all boundary conditions studied yield the same results. ¶ Continuum theories of electrolytes have previously been used to study ion permeation. However, I show that these continuum models do not accurately reproduce the physics taking place inside ion channels by directly comparing the results of both equilibrium Poisson-Boltzmann theory, and non-equilibrium Poisson-Nernst-Planck theory to simulations. In both cases spurious shielding effects are found to cancel out forces that play an important role in ion permeation. In particular, the `reaction field' created by the ion entering the narrow channel is underestimated. Attempts to correct these problems by adding extra force terms to account for this reaction field also fail. ¶ A model of the L-type calcium channel is presented and studied using Brownian dynamics simulations and electrostatic calculations. The mechanisms of permeation and selectivity are explained as the result of simple electrostatic interactions between ions and the fixed charges in the protein. The complex conductance properties of the channel, including the current-voltage and current-concentration relationships, the anomalous mole fraction behaviour between sodium and calcium ions, the attenuation of calcium currents by monovalent ions and the effects of mutating glutamate residues, are all reproduced. ¶ Finally, the simulation and electrostatic calculation methods are used to study the gramicidin A channel. It is found that the continuum electrostatic calculations break down in this narrow channel, as the concept of applying a uniform dielectric constant is not accurate in this situation. Thus, the permeation properties of the channel are examined using Brownian dynamics simulations without electrostatic calculations. Future applications and improvements of the Brownian dynamics simulation technique are also described.
123

Investigation of Operating Parameters Influencing Electrostatic Charge Generation in Gas-Solid Fluidized Beds

Giffin, Amanda 02 February 2011 (has links)
Electrostatic charge generation in gas-solid fluidized beds is a significant industrial problem. Associated problems include particle agglomeration and particle wall fouling. In the polymerization industry this may result in "sheets" of fused polymer, due to exothermic reaction causing the melting of the polymer, which can fall off and block the distributor plate disrupting fluidizing gas flow. Additionally, blockage of the catalyst feed or the polymer removal system can take place or the product can become non-uniform. All of these problems require shut-down of the reactor which results in lost production time. While this phenomena has been identified for many years, the mechanisms involved are not well understood, especially wall fouling and the distribution of charge within the bed. Isolation of individual parameters such as hydrodynamics, operating conditions, and material involved is necessary to evaluate how each parameter impacts charge generation during fluidization. In this thesis, the fluidization system consisted of a stainless steel column, two online Faraday cups, and a retractable distributor plate. This system allowed for the simultaneous measurement of charge within different regions of the bed: the entrained fine particles, the particles adhered to the column wall, and the bulk of the bed. Additionally, mass and particle size distributions were measured and images of the layer of particles adhered to the column wall were taken for comparison. This allowed for a charge distribution comparison and evaluation of wall fouling. Three different parameters were investigated: duration of fluidization, column wall material, and relative humidity of fluidizing gas. Fluidization time was studied for 15, 30, 60, 120, 180, and 360 min; relative humidity was investigated for 0%, 20%, 40%, 60%, and 80% relative humidity. Both fluidization time and relative humidity were evaluated at four different fluidization gas velocities, two each in the bubbling and slugging flow regimes. Column wall material was evaluated for a stainless steel and carbon steel column at two gas velocities, one each in the bubbling and slugging flow regimes. Fluidization time was found to influence wall fouling in the bubbling flow regime as the particle layer continued to build as fluidization progressed. In the slugging flow regime, the particle layer developed within 15 minutes of the onset of fluidization. The bubbling flow regime was shown to have a greater capacity for charge generation than the slugging flow regime. This was due to the vigorous mixing in the bubbling flow regime resulting in more particle-particle interactions. Column wall material was shown to influence wall fouling in the slugging flow regime due to the differences in surface roughness of the columns. This was due to the particle-wall contacts resulting in frictional charging which is the predominant charging mechanism in this flow regime. Charge was also impacted in the bubbling flow regime in those particles that were adhered to the column wall. Relative humidity was found to influence wall fouling at the lowest gas velocity tested. However, variations in generation of charge occurred at all fluidization gas velocities tested; the charge-to-mass ratios for the particles adhered to the column wall in the slugging flow regime decreased with high relative humidities. This was due to either the formation of a water film layer on the column wall or instantaneous surface water films on the particles throughout fluidization.
124

Investigation of Operating Parameters Influencing Electrostatic Charge Generation in Gas-Solid Fluidized Beds

Giffin, Amanda 02 February 2011 (has links)
Electrostatic charge generation in gas-solid fluidized beds is a significant industrial problem. Associated problems include particle agglomeration and particle wall fouling. In the polymerization industry this may result in "sheets" of fused polymer, due to exothermic reaction causing the melting of the polymer, which can fall off and block the distributor plate disrupting fluidizing gas flow. Additionally, blockage of the catalyst feed or the polymer removal system can take place or the product can become non-uniform. All of these problems require shut-down of the reactor which results in lost production time. While this phenomena has been identified for many years, the mechanisms involved are not well understood, especially wall fouling and the distribution of charge within the bed. Isolation of individual parameters such as hydrodynamics, operating conditions, and material involved is necessary to evaluate how each parameter impacts charge generation during fluidization. In this thesis, the fluidization system consisted of a stainless steel column, two online Faraday cups, and a retractable distributor plate. This system allowed for the simultaneous measurement of charge within different regions of the bed: the entrained fine particles, the particles adhered to the column wall, and the bulk of the bed. Additionally, mass and particle size distributions were measured and images of the layer of particles adhered to the column wall were taken for comparison. This allowed for a charge distribution comparison and evaluation of wall fouling. Three different parameters were investigated: duration of fluidization, column wall material, and relative humidity of fluidizing gas. Fluidization time was studied for 15, 30, 60, 120, 180, and 360 min; relative humidity was investigated for 0%, 20%, 40%, 60%, and 80% relative humidity. Both fluidization time and relative humidity were evaluated at four different fluidization gas velocities, two each in the bubbling and slugging flow regimes. Column wall material was evaluated for a stainless steel and carbon steel column at two gas velocities, one each in the bubbling and slugging flow regimes. Fluidization time was found to influence wall fouling in the bubbling flow regime as the particle layer continued to build as fluidization progressed. In the slugging flow regime, the particle layer developed within 15 minutes of the onset of fluidization. The bubbling flow regime was shown to have a greater capacity for charge generation than the slugging flow regime. This was due to the vigorous mixing in the bubbling flow regime resulting in more particle-particle interactions. Column wall material was shown to influence wall fouling in the slugging flow regime due to the differences in surface roughness of the columns. This was due to the particle-wall contacts resulting in frictional charging which is the predominant charging mechanism in this flow regime. Charge was also impacted in the bubbling flow regime in those particles that were adhered to the column wall. Relative humidity was found to influence wall fouling at the lowest gas velocity tested. However, variations in generation of charge occurred at all fluidization gas velocities tested; the charge-to-mass ratios for the particles adhered to the column wall in the slugging flow regime decreased with high relative humidities. This was due to either the formation of a water film layer on the column wall or instantaneous surface water films on the particles throughout fluidization.
125

Screened electrostatic interaction of charged colloidal particles in nonpolar liquids

Espinosa, Carlos Esteban 18 May 2010 (has links)
Liquid dispersions of colloidal particles play a big role in nature and as industrial products or intermediates. Their material properties are largely determined by the liquid-mediated particle-particle interaction. In water-based systems, electric charge is ubiquitous and electrostatic particle interaction often is the primary factor in stabilizing dispersions against decomposition by aggregation and sedimentation. Very nonpolar liquids, by contrast, are usually considered free of charge, because their low dielectric constant raises the electrostatic cost of separating opposite charges above the available thermal energy. Defying this conventional wisdom, nonpolar solutions of certain ionic surfactants do support mobile ions and surface charges. Even some nonionic surfactants have recently been found to raise the conductivity of nonpolar oils and promote surface charging of suspended particles, but this counter-intuitive behavior is not yet widely acknowledged, nor is the mechanism of charging understood. The present study provides the first characterization of the electrostatic particle interaction caused by nonionizable surfactants in nonpolar oils. The methods used in this study are video microscopy experiments where particle positions of equilibrium ensembles are obtained and translated into particle interactions. Experimentally, equilibrium particle positions are monitored by digital video microscopy, and subjected to liquid structure analysis in order to find the energy of interaction between two particles. The observed interaction energy profiles agree well with a screened-Coulomb potential, thus confirming the presence of both surface charge and mobile ions in solution. In contrast to recently reported electrostatic particle interactions induced by ionic surfactants in nonpolar solution, the present study finds evidence of charge screening both above and below the surfactant's critical micelle concentration, CMC. Fitted Debye screening lengths are much larger than in aqueous systems, but similar to the Debye length in nonpolar oils reported for micellar solutions of ionic surfactants cite{hsu_charge_2005}. Radial distribution functions obtained from experiments are compared to Monte-Carlo simulations with input potentials obtained from a fit to the interaction measurement. The measured electrostatic forces and fitted surface potentials are fairly substantial and easily capable of stabilizing colloidal dispersions. Although few in number, surface charges formed on polymer particle surfaces submerged in nonpolar solutions of nonionizable surfactants create surface potentials comparable to those in aqueous systems.
126

Investigation of Operating Parameters Influencing Electrostatic Charge Generation in Gas-Solid Fluidized Beds

Giffin, Amanda 02 February 2011 (has links)
Electrostatic charge generation in gas-solid fluidized beds is a significant industrial problem. Associated problems include particle agglomeration and particle wall fouling. In the polymerization industry this may result in "sheets" of fused polymer, due to exothermic reaction causing the melting of the polymer, which can fall off and block the distributor plate disrupting fluidizing gas flow. Additionally, blockage of the catalyst feed or the polymer removal system can take place or the product can become non-uniform. All of these problems require shut-down of the reactor which results in lost production time. While this phenomena has been identified for many years, the mechanisms involved are not well understood, especially wall fouling and the distribution of charge within the bed. Isolation of individual parameters such as hydrodynamics, operating conditions, and material involved is necessary to evaluate how each parameter impacts charge generation during fluidization. In this thesis, the fluidization system consisted of a stainless steel column, two online Faraday cups, and a retractable distributor plate. This system allowed for the simultaneous measurement of charge within different regions of the bed: the entrained fine particles, the particles adhered to the column wall, and the bulk of the bed. Additionally, mass and particle size distributions were measured and images of the layer of particles adhered to the column wall were taken for comparison. This allowed for a charge distribution comparison and evaluation of wall fouling. Three different parameters were investigated: duration of fluidization, column wall material, and relative humidity of fluidizing gas. Fluidization time was studied for 15, 30, 60, 120, 180, and 360 min; relative humidity was investigated for 0%, 20%, 40%, 60%, and 80% relative humidity. Both fluidization time and relative humidity were evaluated at four different fluidization gas velocities, two each in the bubbling and slugging flow regimes. Column wall material was evaluated for a stainless steel and carbon steel column at two gas velocities, one each in the bubbling and slugging flow regimes. Fluidization time was found to influence wall fouling in the bubbling flow regime as the particle layer continued to build as fluidization progressed. In the slugging flow regime, the particle layer developed within 15 minutes of the onset of fluidization. The bubbling flow regime was shown to have a greater capacity for charge generation than the slugging flow regime. This was due to the vigorous mixing in the bubbling flow regime resulting in more particle-particle interactions. Column wall material was shown to influence wall fouling in the slugging flow regime due to the differences in surface roughness of the columns. This was due to the particle-wall contacts resulting in frictional charging which is the predominant charging mechanism in this flow regime. Charge was also impacted in the bubbling flow regime in those particles that were adhered to the column wall. Relative humidity was found to influence wall fouling at the lowest gas velocity tested. However, variations in generation of charge occurred at all fluidization gas velocities tested; the charge-to-mass ratios for the particles adhered to the column wall in the slugging flow regime decreased with high relative humidities. This was due to either the formation of a water film layer on the column wall or instantaneous surface water films on the particles throughout fluidization.
127

Implementation of AlGaN/GaN based high electron mobility transistor on ferroelectric materials for multifunctional optoelectronic-acoustic-electronic applications

Lee, Kyoung-Keun 02 January 2009 (has links)
This dissertation shows the properties of lithium niobate and lithium tantalate as a promising substrate for III-nitrides, addresses several problems of integrating compound semiconductor materials on LN and LT. It also suggests some solutions of the addressed problems, including furnace anneals at high temperature. While this furnace anneal improved surface smoothness and III-nitride film adhesion, it also caused the repolarization on the congruent LN (48.39 mole % of Li2O) samples. However, the repolarization was not developed in the stoichiometric LN (49.9 mole % of Li2O) samples during the identical thermal treatment. Also, the structural quality of GaN epitaxial layers showed slight improvement when grown on LT substrates over LN substrates. Conventional epitaxial growth technologies were adapted and modified to implement a successful AlGaN/GaN heterostructure on LN (LT). The heterostructure were analyzed to verify the electrical and material properties using several characterization techniques. Finally, it demonstrates AlGaN/GaN-based HEMT devices on ferroelectric materials that will allow the future development of the multifunctional electrical and optical applications.
128

An electrostatic particle accelerator

Naylor, Henry January 1968 (has links)
Introduction: This thesis is an account of the design, construction and testing of a particle accelerator which represents a minor variation on the now-familiar theme of the tandem van de Graaff. The machine has been very briefly described elsewhere (Naylor 1968).
129

An electrostatic particle accelerator

Naylor, Henry January 1968 (has links)
Introduction: This thesis is an account of the design, construction and testing of a particle accelerator which represents a minor variation on the now-familiar theme of the tandem van de Graaff. The machine has been very briefly described elsewhere (Naylor 1968).
130

An electrostatic particle accelerator

Naylor, Henry January 1968 (has links)
Introduction: This thesis is an account of the design, construction and testing of a particle accelerator which represents a minor variation on the now-familiar theme of the tandem van de Graaff. The machine has been very briefly described elsewhere (Naylor 1968).

Page generated in 0.0191 seconds