• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 662
  • 313
  • 170
  • 76
  • 50
  • 50
  • 28
  • 16
  • 16
  • 10
  • 9
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1693
  • 735
  • 457
  • 388
  • 320
  • 282
  • 231
  • 205
  • 181
  • 150
  • 138
  • 128
  • 128
  • 128
  • 127
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human unbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression

Jones, Huw S., Gordon, A., Magwensi, S.G., Naseem, K., Atkin, S.L., Courts, F.L. 29 April 2020 (has links)
Yes / Quercetin is reported to reduce blood pressure in hypertensive but not normotensive humans, but the role of endothelial redox signaling in this phenomenon has not been assessed. This study investigated the effects of physiologically obtainable quercetin concentrations in a human primary cell model of endothelial dysfunction in order to elucidate the mechanism of action of its antihypertensive effects. Angiotensin II (100 nM, 8 h) induced dysfunction, characterized by suppressed nitric oxide availability (85 ± 4% p<0.05) and increased superoxide production (136 ± 5 %, p<0.001). These effects were ablated by an NADPH oxidase inhibitor. Quercetin (3 μM, 8 h) prevented angiotensin II induced changes in nitric oxide and superoxide levels, but no effect upon nitric oxide or superoxide in control cells. The NADPH oxidase subunit p47(phox) was increased at the mRNA and protein levels in angiotensin II-treated cells (130 ± 14% of control, p<0.05), which was ablated by quercetin co-treatment. Protein kinase C activity was increased after angiotensin II treatment (136 ± 51%), however this was unaffected by quercetin co-treatment. Physiologically obtainable quercetin concentrations are capable of ameliorating angiotensin II-induced endothelial nitric oxide and superoxide imbalance via protein kinase C-independent restoration of p47(phox) gene and protein expression. / Innovate UK and Boots Pharmaceuticals
372

VEGF stimulates activation of ERK5 in the absence of C-terminal phosphorylation preventing nuclear localization and facilitating AKT activation in endothelial cells

17 November 2023 (has links)
Yes / Extracellular-signal-regulated kinase 5 (ERK5) is critical for normal cardiovascular development. Previous studies have defined a canonical pathway for ERK5 activation, showing that ligand stimulation leads to MEK5 activation resulting in dual phosphorylation of ERK5 on Thr218/Tyr220 residues within the activation loop. ERK5 then undergoes a conformational change, facilitating phosphorylation on residues in the C-terminal domain and translocation to the nucleus where it regulates MEF2 transcriptional activity. Our previous research into the importance of ERK5 in endothelial cells highlighted its role in VEGF-mediated tubular morphogenesis and cell survival, suggesting that ERK5 played a unique role in endothelial cells. Our current data show that in contrast to EGF-stimulated HeLa cells, VEGF-mediated ERK5 activation in human dermal microvascular endothelial cells (HDMECs) does not result in C-terminal phosphorylation of ERK5 and translocation to the nucleus, but instead to a more plasma membrane/cytoplasmic localisation. Furthermore, the use of small-molecule inhibitors to MEK5 and ERK5 shows that instead of regulating MEF2 activity, VEGF-mediated ERK5 is important for regulating AKT activity. Our data define a novel pathway for ERK5 activation in endothelial cells leading to cell survival. / This research was funded by grants from: North West Cancer Research (NWCR): M.J.C. and A.K.M.; Medical Research Council (MRC DiMeN PhD): M.J.C. and K.A.; Biotechnology and Biological Sciences Research Council (BBSRC DTG Studentship): M.J.C., C.E.P.G., B.W. and G.N.N.; and Wellcome Trust Institutional Strategic Fund: M.J.C. and A.K.M.
373

Untersuchung des Tumorgefäßbildes an murinen Tumormodellen unter antiangiogener Therapie mit Axitinib und mG6-31 / Investigation of the tumor vascular pattern in murine tumor models under antiangiogenic therapy with axitinib and mG6-31

Funke, Caroline January 2024 (has links) (PDF)
Die Tumorangiogenese ist ein Prozess, der zur Ausbildung eines tumoreigenen Gefäßnetzwerks führt und kritisch ist für die Progression des Tumorwachstums, sowie für dessen Malignisierung und Metastasierung. Zytokine wie VEGF und PDGF steuern angiogene Prozesse. Die resultierende Tumorvaskulatur ist jedoch dysfunktional und unterscheidet sich in Struktur und Funktion stark von normalen Gefäßen. Die antiangiogene Therapie richtet sich gegen die Tumorvaskulatur indem Angiogenese-induzierende Signalwege inhibiert werden. Es existieren zahlreiche therapeutische Ansätze, zu denen u.a. Anti-VEGF- Antikörper und Rezeptortyrosinkinaseinhibitoren zählen. Ziel der antiangiogenen Therapie ist es, die Ausbildung neuer Blutgefäße im Tumor zu stoppen sowie existierende unreife Blutgefäße zu zerstören. Das Konzept der Gefäßnormalisierung beschreibt im Rahmen der antiangiogenen Therapie Prozesse, die zu einer transienten Verbesserung dieser defekten Tumorvaskulatur und zu ihrer tendenziellen Angleichung an Struktur und Funktion von normalen Gefäßen führen sollen. In dieser Studie wurden Veränderungen von Gefäßparametern in murinen AT3- Mammakarzinomen und murinen Lewis-lung-Karzinomen miteinander verglichen, die entweder (a) mit mG6-31, einem monoklonalen Anti-VEGF- Antikörper, (b) mit Axitinib, einem niedermolekularen VEGF-R-/PDGF-R- Tyrosinkinaseinhibitor antiangiogen behandelt oder (c) nicht behandelt wurden. Ziel war es dabei, Aussagen über die antiangiogene Wirksamkeit sowie die Gefäß- normalisierende Effektivität der o.g. Antiangiogenetika zu treffen. In einer bereits abgeschlossenen Forschungsarbeit von Ascheid (vgl. Absatz 7.2) wurden mit dem gleichen Experimentalaufbau wie zuvor beschrieben ebenfalls murine Tumoren hinsichtlich makroskopischer Gefäßstruktur und -organisation untersucht. Dabei wurde aufgezeigt, dass Gefäß-normalisierende Prozesse durch o.g. Angiogenetika in geringem Umfang stattfanden. Die durchgeführte Studie zielte darauf ab, die bereits erfassten Resultate zu komplettieren und somit eine abschließende Aussage über das Auftreten von Gefäßnormalisierung zu ermöglichen. 88 In den mG6-31-/Axitinib-/unbehandelten AT3-/LLC-Tumorschnitten wurden die Parameter Gefäßdichte, Apoptoserate, Proliferationsrate, Perizytenbesatz, Intaktheit der vaskulären Basalmembran und endotheliale Expression von TRPC6-Kanälen immunhistochemisch bzw. mittels Immunfluoreszenz detektiert, mikroskopisch aufgenommen und quantifiziert. Diese Arbeit zeigt, dass Axitinib deutliche antiangiogene Effekte in der Tumorvaskulatur hervorruft, mG6-31 hingegen wirkt schwächer antiangiogen. Im Unterschied zu den Ergebnissen aus Ascheids Arbeit (Ascheid, 2018) konnten- Effekte auf der Ebene der individuellen Blutgefäße nachgewiesen werden, die in der Literatur als Anzeichen für eine Gefäßnormalisierung beschrieben werden. Wiederum waren diese Effekte unter Axitinib stärker ausgeprägt als unter mG6- 31-Behandlung. Die Resultate beider Forschungsarbeiten zusammengefasst betrachtet, kann man feststellen, dass die Zusammenfassung der gefäßverändernden Effekte, die antiangiogene Wirkstoffe hervorrufen, unter dem Begriff „Normalisierung“ in Frage gestellt werden sollte. / Tumor angiogenesis is a process which leads to the formation of a tumor specific capillary system. It is a critical step towards tumor growth, malignancy and metastasis. Cytokins like VEGF and PDGF regulate angiogenic processes. The resulting tumor vasculature, however, is dysfunctional and strongly differs from structure and function in normal blood vessels. Antiangiogenic therapy is targeted against tumor vessels by inhibition of angiogenesis inducing signaling pathways. Numerous therapeutic approaches exist, for instance anti-VEGF antibodies and receptor tyrosine kinase inhibitors. Antiangiogenic therapy aims to stop the formation of new blood vessels and to prune the existing immature blood vessels. The concept of vessel normalization as part of antiangiogenic therapy describes a transient optimization of the defective tumor vasculature by acquisition of a phenotype more similar to the one of normal vessels in healthy tissue. In this study differences of vessel parameters in murine AT3 breast cancer and murine Lewis lung carcinoma were compared to ultimately evaluate the antiangiogenic and vessel normalizing effectiveness of the studied agents. Tumors were either (a) treated with mG6-31, a monoclonal anti-VEGF antibody or (b) treated with Axitinib, a VEGF-R-/PDGF-R-tyrosine kinase inhibitor or (c) untreated. In a previous study by Ascheid the same tumor models were examined with the same experimental design but with regard to macroscopic vessel structure and organization. It has been demonstrated that under the mentioned antiangiogenic agents vessel normalizing effects appeared only slightly. The current study aims to complete these results and to, in consideration of both, allow a statement concerning the appearance of vessel normalization. In the mG6-31/Axitinib/untreated AT3/LLC tumors the parameters vessel density, apoptosis rate, proliferation rate, pericyte covering, integrity of the vascular basement membrane and endothelial expression of TRPC6 channels were detected via immunohistochemistry or immunofluorescence, microscopically captured and quantified. This study demonstrates that Axitinib causes distinct antiangiogenic effects in tumor vasculature, whereas mG6-31 shows only light antiangiogenic action. In contrast to the results obtained by Ascheid vessel normalization did occur in this 90 study – more frequently under Axitinib than under mG6-31. Reflecting on the combined out-comes of the complementary study it has to be stated that the concept of a general normalization of tumor vasculature is highly questionable and subsequently has to be reconsidered.
374

PHYSICAL INTERACTIONS BETWEEN NEUROPILIN AND VEGFRS, INTEGRINS IN REGULATING ENDOTHELIAL CELL FUNCTIONS

Li, Xiaobo 01 January 2015 (has links)
The neuropilin (Nrp) family consists of multifunctional cell surface receptors with critical roles in a number of different cell and tissue types. A core aspect of Nrp function is ligand-dependent cellular adhesion and migration, where it controls the multistep process of cellular motility through integration of ligand binding, receptor coupling and signaling via the coordinated action of its extracellular and intracellular domains. While Nrp regulates cellular adhesion and motility in the cardiovascular and nervous systems under physiological conditions, the emerging pathological role of Nrp in tumor cell migration and metastasis has been identified and provides motivation for continued efforts toward developing Nrp inhibitors. At the molecular level, the role of Nrp in adhesion and migration is intimately connected to the control of adhesive interactions and cytoskeletal reorganization. The adhesive “interactome” for Nrp draws much attention because of its lack of enzymatic activity and inability to transduce signals on its own. It is an active area of research and is still expanding dramatically. Nrp has been well defined as a co-receptor for vascular endothelial growth factor receptor (VEGFR)/vascular endothelial growth factor (VEGF) signaling through enhancing receptor-ligand interaction in angiogenesis. Here, we contribute to this concept through characterization in more biochemical detail about Nrp-1/VEGF physical interactions. VEGF has been shown to compete with Sema3 for binding to Nrp-1 b1 ligand binding pocket. This competition fine-tunes VEGF-induced angiogenesis. Our data provides a molecular mechanism for high affinity Sema3F binding to Nrp-1 in the b1 domain. As to the VEGFR-independent function, Nrp/integrin association has been demonstrated. The functional integration has been shown for Nrp/integrin in angiogenic sprouting. Both proteins are highly expressed in endothelial tip cells to mediate endothelial cell migration during angiogenesis and knockdown of either one in mice leads to embryonic lethality due to similar defects in vascular development. To identify the structure and function correlation, we characterized in more detail about Nrp-1/integrin physical interactions with biochemical and cell-based assays. Through an integrated approach of biochemical, molecular and cellular methods, we defined the direct physical interactions between Nrp-1 and integrins. We have also extended this work to demonstrate the functional importance and contribution of the interactions in integrin-mediated cell adhesion on extracellular matrix (ECM) in angiogenesis and platelet function during wound healing and provide a molecular basis for the integration of Nrps/integrins in cell migration, adhesion to ECM, breast cancer initiation and breast cancer stem cell fate determination.
375

The responses of endothelium to insult : does endothelial heterogeneity play a role in in vitro cell models

Mthethwa, Mashudu 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Endothelial injury and dysfunction precede the development of cardiovascular diseases. The endothelium may be regarded as the first line of defence against inflammation / obesity-induced vascular injury, therefore gaining more information on the mechanisms of injury and response to injury, as well as modulating endothelial function may be key in the prevention of cardiovascular diseases. Endothelial cells differ in structure and function, therefore endothelial heterogeneity may be relevant when investigating endothelial function and dysfunction. Understanding endothelial heterogeneity in response to pathophysiological stimuli may be of significance in the prevention of cardiovascular diseases. Oleanolic acid (OA), a plant-derived triterpenoid, has been shown to possess endothelio-protective properties; however, its role in reversing endothelial injury is poorly understood. This study investigated endothelial heterogeneity between aortic endothelial cells (AECs) and cardiac microvascular endothelial cells (CMECs) at baseline and in response to an inflammatory insult via the cytokine, tumour necrosis factor-alpha (TNF-α). An in vitro model of endothelial injury was developed by treating AECs and CMECs with 20 ng/ml TNF-α for 24 hours. Endothelial heterogeneity was investigated by comparing intracellular nitric oxide (NO) and reactive oxygen species (ROS) production, protein expression and phosphorylation, and large-scale protein expression and regulation in AECs and CMECs. The experimental techniques included flow cytometry, western blots and proteomic analyses. An ex vivo model of endothelial injury was included to investigate vascular function in aortic rings from lean and high fat diet (HFD) rats. The role of OA in reversing TNF-α-induced injury and modulating vascular function in the ex vivo model was investigated. Although baseline NO-levels were similar between AECs and CMECs, heterogeneity was observed with regards to the NO biosynthetic pathway in terms of increased eNOS expression in CMECs. Baseline ROS levels were heterogeneous between AECs and CMECs, interestingly CMECs possessed higher anti-oxidant capacity. An in vitro model of TNF-α-induced injury was confirmed by decreased NO-levels, increased ROS-levels and necrosis, up-regulation of apoptotic proteins and activation of inflammatory pathways in AECs and CMECs. Here, heterogeneity between AECs and CMECs was also observed: endothelial activation was mediated through different proteins in AECs (CD9 molecule, galectin) and CMECs (ICAM-1 and IL-36α). Apoptosis was mediated by caspase 3 in AECs and Bid in CMECs. AECs appeared to advance to a dysfunctional state shown by up-regulation of endothelin-converting enzyme and angiotensin II-converting enzyme, while CMECs maintained an activated state. OA reversed TNF-α-induced injury through restoring NO-production, decreasing ROS-production in both AECs and CMECs, and inhibiting necrosis in AECs. In the ex vivo model of injury, aortic rings from 16-week HFD rats showed a pro-contractile response to phenylephrine-induced contraction, a response that was reversed by OA. In conclusion, we demonstrated novel findings with regards to endothelial heterogeneity between AECs and CMECs under baseline and TNF-α-treated conditions. Although reduced NO-bioavailability may be the hallmark of endothelial dysfunction, signalling pathways mediating endothelial injury may differ between cell types as was shown in this study. We demonstrated that OA possess protective properties in AECs and CMECS, an observation which was translated to the ex vivo model. / AFRIKAANSE OPSOMMING: Endoteelbesering en –disfunksie gaan die ontwikkeling van kardiovaskulêre siektes vooraf. Die endoteel word as die eerste linie van verdediging teen inflammasie / vetsug-geïnduseerde vaskulêre skade beskou; dus is die ontginning van nuwe inligting betreffende die meganismes van en respons tot besering, asook die modulering van endoteelfunksie essensieël in die voorkoming van kardiovaskulêre siektes. Endoteelselle verskil t.o.v. struktuur en funksie, en dus is endoteel-heterogeniteit relevant tydens die ondersoek van endoteelfunksie en –disfunksie. ‘n Beter begrip van endoteel-heterogeniteit in die respons tot patofisiologiese stimuli kan betekenisvol tot die voorkoming van kardiovaskulêre siektes bydra. Oleanoliese suur (OA), ‘n triterpenoïed afkomstig van plante is voorheen bewys om endoteelbeskermende eienskappe te besit; die rol van OA in die omkering van endoteelbesering is egter minder bekend. Hierdie studie het endoteel-heterogeniteit tussen aorta endoteelselle (AECs) en hart mikrovaskulêre endoteeelselle (CMECs) by basislyn en in respons tot ‘n inflammatoriese besering via die sitokien, tumor nekrose faktor-alfa (TNF-α), ondersoek. ‘n In vitro model van endoteelbesering is ontwikkel deur AECs en CMECs met 20 ng/ml TNF-α vir 24 uur te behandel. Endoteel-heterogeniteit was ondersoek deur intrasellulêre stikstofoksied (NO) en reaktiewe suurstofspesies (ROS) produksie, proteïenuitdrukking en fosforilering, en grootskaalse proteïenuitdrukking en regulering in AECs en CMECs te vergelyk. Die eksperimentele tegnieke het ingesluit: vloeisitometrie, western blots en proteomika. ‘n Ex vivo model van endoteelbesering was ook ingesluit deur die vaskulêre funksie in aortaringe van normale en hoë vet dieet-gevoerde (HFD) rotte te meet. Die rol van OA in die omkering van TNF-α-geïnduseerde besering en modulering van vaskulêre funksie was in hierdie model is ondersoek. Alhoewel basislyn NO-vlakke vergelykbaar was in AECs en CMECs, is heterogeniteit wel aangetoon m.b.t. die NO biosintese pad met verhoogde eNOS uitdrukking in die CMECs. Basislyn ROS-vlakke was verskillend in AECs en CMECs en die CMECs het hoër anti-oksidant kapasiteit getoon. ‘n In vitro model van TNF-α-geïnduseerde besering is bevestig met die waarneming van verlaagde NO-vlakke, verhoogde ROS-vlakke en nekrose, opregulering van apoptotiese proteïene en aktivering van inflammatoriese paaie in AECs en CMECs. Hier was heterogeniteit ook opmerkbaar: endoteelaktivering was deur verskillende proteïene in AECs (CD9 molekule, galektien) en CMECs (ICAM-1, IL-36α) bemiddel. Apotose was deur kaspase 3 in AECs en Bid in CMECs bemiddel. Dit het geblyk dat AECs tot ‘n staat van endoteeldisfunksie gevorder het met die opregulering van endotelien-omsettingsensiem en angiotensien II-omsettingsensiem, terwyl CMECs eerder ‘n geaktiveerde staat gehandhaaf het. OA het TNF-α-geïnduseerde besering omgekeer deur NO-produksie te herstel, ROS-produksie te onderdruk in beide AECs en CMECs, en nekrose te inhibeer in AECs. In die ex vivo model van besering, het aortaringe van 16-week HFD rotte ‘n pro-kontraktiele respons tot fenielefrien-geïnduseerde kontraksie getoon, wat deur OA omgekeer is. Ten slotte, nuwe bevindinge is waargeneem m.b.t. endoteel-heterogeniteit tussen AECs en CMECs onder basislyn en TNF-α-behandelde omstandighede. Alhoewel verlaagde NO-biobeskikbaarheid die waarmerk van endoteeldisfunksie is, het hierdie studie getoon dat seintransduksiepaaie wat endoteelbesering medieer verskillend is tussen seltipes. Die studie het verder ook gedemonstreer dat OA beskermende eienskappe toon in AECs en CMECs, ‘n waarneming wat ook in die ex vivo model aangetoon kon word.
376

Efeito do treinamento físico prévio nas alterações de função e estrutura renais provocadas pela administração de adriamicina em ratos / Effects of previous physical training on structural and functional renal disturbances induced by adriamycin in rats

Faleiros, Camila de Mattos 03 May 2017 (has links)
A nefropatia induzida por adriamicina (ADR) em ratos é um dos modelos experimentais mais utilizados para o estudo desenvolvimento da doença renal progressiva. Uma dose única deste quimioterápico induz a proteinúria progressiva e irreversível que progride para glomeruloesclerose segmental e focal, com fusão dos processos podais e lesões tubulointersticiais. A lesão das células endoteliais glomerulares precede as alterações dos podócitos na nefropatia induzida pela ADR. A atividade física regular melhora as funções cardíacas e renais em pacientes e animais com doença renal progressiva e pode reduzir ou retardar a progressão da lesão renal. Este estudo avaliou o efeito do treinamento físico prévio na evolução da lesão renal induzida por ADR e a sua relação com o processo inflamatório, a função endotelial e angiogênese. Ratos Wistar submetidos ou não ao treinamento físico receberam ADR (2,5 mg/kg, e.v) ou solução salina fisiológica (SAL). Amostras de sangue e urina foram coletadas 60 dias após as injeções para avaliação da função renal e os rins removidos para estudos histológicos, imuno-histoquímicos, Western blot e de ELISA. Amostras de urina de 24 h, obtidas 7, 30 e 60 dias após a administração de ADR ou SAL, foram utilizadas para avaliação da albuminúria. Os ratos tratados com ADR apresentaram albuminúria progressiva, elevação dos níveis plasmáticos de creatinina e queda da taxa de filtração glomerular (TFG), lesão de podócitos, expansão da área mesangial, alargamento da área intersticial relativa no córtex renal, infiltração de macrófagos, aumento dos níveis de interleucina (IL)-1?, elevação dos níveis urinários do fator de transformação do crescimento ? (TGF-?) e dos níveis urinários de proteína quimiotática de monócitos 1 (MCP-1), diminuição de marcação de aminopeptidase P (marcador de células endoteliais) nos glomérulos e perda de capilares peritubulares corticais, que estavam associados com reduções das expressões do fator de crescimento endotelial vascular (VEGF) e da óxido nítrico sintase endotelial (eNOS) no córtex renal desses animais. Estas alterações foram menos intensas nos ratos que realizaram treinamento físico prévio ao tratamento com ADR. Em conclusão, o pré-condicionamento físico reduziu as lesões renais induzidas pela ADR. Este efeito esteve associado com as reduções do processo inflamatório, das lesões endoteliais e das alterações de fatores relacionados com o processo de angiogênese (VEGF e eNOS) no córtex renal. / Adriamycin (ADR)-induced nephropathy is one of the most experimental models of progressive kidney disease in rats. A single dose of this drug induces progressive and irreversible proteinuria that progresses to focal segmental glomerulosclerosis and tubulointerstitial lesions. The lesion of glomerular endothelial cells precedes the podocyte damage in nephropathy induced by ADR. Regular physical activity improves cardiac and renal functions in patients and animals with progressive renal disease and may reduce or delay the progress of impaired renal function. This study evaluated the effect of previous physical training in renal damage induced by ADR and the role of inflammation, endothelial lesions and angiogenesis in this process. Male Wistar rats submitted or not to previous physical training received ADR (2.5 mg/kg, i.v.) or physiological saline (SAL). Urine and plasma samples were collect 60 days after the injection in order to evaluated the renal function. The kidneys were removed for histological, immunohistochemical, Western blot and ELISA analysis. Twenty-four-hour urine samples were collected to dose albuminuria 7, 30 and 60 days after ADR or SAL injection. ADR-treated rats presented progressive albuminuria, increases in plasma creatinine levels, decreasing glomerular filtration rate (GFR), podocyte damage, mesangial expansion, enlargement of the tubular interstitial relative area of renal cortex, macrophage infiltration, higher interleukin (IL)- 1? levels in renal tissue, urinary transforming growth factor ? (TGF-?) and urinary monocyte chemoattractant protein (MCP)-1, reduction of aminopeptidase P (endothelial cell marker) in the glomeruli and cortical peritubular capillary number. Those were associated with reduction in vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) expressions in renal cortex. Those alterations were less intense in the animals undergone previous exercise training. In conclusion, physical training prior to ADR injection reduced the renal damage induced by this drug. This effect was related with the reduction of the inflammatory process, endothelial lesions and with the decrease in alterations of factors related to the process of angiogenesis (VEGF and eNOS) in renal cortex.
377

Sodium salicylate prevents inflammation-associated decreases in phosphorylated-Enos SER1177 in human aortic endothelial cells through an AMPK-dependent mechanism

Siefers, Kyle John 01 May 2014 (has links)
Obesity is associated with chronic inflammation and increased risk of developing cardiovascular disease (CVD). Obesity is also associated with nitric oxide (NO)-mediated vascular endothelial dysfunction (VED), an independent predictor of increased CVD risk in humans. Pro-inflammatory cytokines secreted by the adipose tissue, such as TNF-Α, may contribute to VED through promotion of insulin resistance or directly through a reduction in endothelial NO synthase (eNOS) expression and/or phosphorylation. Sodium salicylate (Na-Sal) is a non-acetylated aspirin that inhibits the pro-inflammatory transcription factor nuclear factor-ΚB (NF-ΚB) and activates the cellular metabolism regulator AMP-activated protein kinase (AMPK). AMPK is a known activator of eNOS. We tested the hypothesis that Na-Sal increases eNOS expression/phosphorylation in TNFΑ-stimulated endothelial cells through an AMPK-dependent mechanism. Human aortic endothelial cells (HAECs) incubated in vitro with TNF-Α (10 ng/ml, 2 hrs) demonstrated decreased (vs. control) expression (via Western blotting) of eNOSser1177 phosphorylation (n=8; PThr172 phosphorylation (n=8, Pser1177 phosphorylation (vs. control, n=7; P=0.14) and AMPKThr172 phosphorylation (vs. control, n=9; P=0.42). The AMPK activator AICAR prevented eNOSser1177 phosphorylation down-regulation by TNF-Α in a manner similar to Na-Sal (n=2, P=0.839). Co-treatment with the AMPK inhibitor compound C (10 μM, 30 min) abolished the ability of Na-Sal to prevent down-regulation of eNOSser1177 phosphorylation by TNF-Α (vs. control, n=3; Pser1177 in endothelial cells in part through AMPK.
378

Maternal-fetal conflict during placental malaria : hypertension, trophoblast sVEGFR1 expression and maternal inflammation /

Muehlenbachs, Atis, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 85-102).
379

In Vitro Model of Vascular Healing in the Presence of Biomaterials

Rose, Stacey Loren 16 November 2006 (has links)
Coronary artery stent placement has been a significant advance in the percutaneous treatment of atherosclerotic disease, and tissue engineered vascular grafts may provide a viable alternative to autologous segments for small diameter vessels. However, in-stent restenosis remains an important limitation, and tissue engineered grafts have poor patency and high risk of thrombus formation due to their inability to maintain a confluent, adherent, and quiescent endothelium. While animal models provide insight into the pathophysiology of these situations, elucidation of the relative importance of stent or graft components, hemodynamic factors, and molecular factors is difficult. Very little research has focused on bridging gaps in knowledge concerning blood/biomaterial interactions, blood/endothelial cell interactions, and endothelial cell/smooth muscle cell cross-talk. The work presented within this thesis will do just that. The objective of this thesis research was to elucidate the influence of biomaterial-induced activation of leukocytes on endothelial cell or smooth muscle cell phenotype, as well as endothelial cell/smooth muscle cell cross-talk in co-culture systems. Towards this goal, two complimentary in vitro endothelial cell/smooth muscle cell co-culture models with divergent smooth muscle cell phenotype were developed and characterized. Using these systems, it was found that the presence of more secretory smooth muscle cells (as would be seen in wound healing or disease) in general enhanced endothelial cell activation in response to biomaterial-pretreated monocytes, while the presence of less secretory smooth muscle cells (to model more quiescent smooth muscle cells found in uninjured healthy vessels) suppressed endothelial cell activation in response to biomaterial-pretreated monocytes (and neutrophils to a small degree). Additionally, biomaterial-pretreated monocytes and neutrophils amplified a smooth muscle cell phenotypic shift away from a more quiescent state. It is likely that the compounding effect of secretory smooth muscle cells and biomaterial-activated leukocytes are responsible for altered vascular wound healing upon implantation of stents or vascular grafts. Understanding the specific signals causing these effects, or signals delivered by contractile smooth muscle cells that limit these effects help to provide design criteria for development of devices or grafts capable of long term patency.
380

Small Interfering RNA Decreases VEGF mRNA Expression and Proliferation of Colorectal Cancer Cells

Ward, Stephen 15 November 2006 (has links)
Vascular endothelial growth factor (VEGF-A) was first described in 1989 for its angiogenic and mitogenic properties. Early studies indicated that VEGF-A acts primarily in a paracrine pathway which is limited to vascular endothelium. Further investigation showed that VEGF-A and VEGF receptor-2 (VEGFR-2) are expressed by many solid tumors and improve cell growth and survival. Therefore, VEGF-A may act via an autocrine pathway that effects tumor cellular proliferation by binding VEGFR-2 at the cell surface. This study utilizes small interfering RNA (siRNA) technology to investigate the presence of an autocrine loop in human RKO colorectal cancer cells. RT-PCR demonstrated the expression of VEGF-A, VEGF-B, VEGF-D, placental growth factor (PlGF), VEGFR-2, neuropilin-1 (NP-1) and neuropilin-2 (NP-2) in vitro by RKO cells. Transfection with siRNA against VEGF-A resulted in a 94% knockdown of VEGF-A expression by ELISA. Northern blot, quantitative real time PCR and semiquantitative RT-PCR confirmed the knockdown data. In addition, transfected RKO cells showed a 67% decrease in cellular proliferation by WST-1 assay. This data correlated to the ELISA results. In summary, the presence of VEGF-A and VEGFR-2 argues in favor of an autocrine loop in human colorectal cancer cells. siRNA targeting of VEGF-A remains a promising anti-tumor therapeutic strategy.

Page generated in 0.0411 seconds