• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 667
  • 313
  • 170
  • 76
  • 50
  • 50
  • 28
  • 16
  • 16
  • 10
  • 9
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1698
  • 739
  • 458
  • 388
  • 320
  • 282
  • 231
  • 206
  • 182
  • 150
  • 138
  • 128
  • 128
  • 128
  • 127
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Mechanisms of soy isoflavones in the regulation of vascular function

Si, Hongwei 16 January 2008 (has links)
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in the United States. It is also well recognized that the incidence of CVD is substantially increased in postmenopausal women due to the loss of estrogen. Experimental and clinical data support vascular protective effects of estrogen by various mechanisms. However, administration of estrogen is also associated with an increased incidence of heart disease which limits its therapeutic potential. Given the demonstrated risks of conventional estrogen therapy, a search for novel, cost-effective, alternative vasoactive agents for prevention of CVD is of major importance in the effort to decrease the burden of CVD morbidity. Genistein, a major soy isoflavone, may be one of those alternative agents because of its selective affinity to estrogen receptor-beta and various beneficial effects on CVD. However, the mechanism of the cardioprotective effects of genistein is still unclear. The objectives of this study were (1) to investigate the effect of genistein on the expression of endothelial nitric oxide synthase (eNOS) both in vitro and in vivo; (2) to define the mechanism by which genistein regulates eNOS expression; and, (3) to examine whether genistein protects against tumor necrosis factor-alpha (TNF-α)-induced apoptosis in human aortic endothelial cells (HAECs). The results demonstrated that genistein, at physiologically achievable concentrations (1-10 μM) in individuals consuming soy products, enhanced the expression of eNOS protein and subsequently elevated nitric oxie (NO) synthesis in both HAECs and human umbilical vein endothelial cells, concomitant with the increased eNOS mRNA expression (2.6-fold of control) and eNOS promoter activity, suggesting that genistein activates eNOS transcription. Furthermore, dietary supplementation of genistein to spontaneously hypertensive rats restored aortic eNOS levels, improved aortic wall thickness, and alleviated hypertension, confirming the biological relevance of the in vitro findings. However, the effects of genistein on eNOS and NO were not mediated by activation of estrogen signaling, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt kinase, protein kinase C or inhibition of typrosine kinases, but possibly through activating the cAMP/protein kinase A/cAMP responsive elemant binding protein pathway. These data suggest that genistein has direct genomic effects on the vascular wall that are unrelated to its known actions, leading to increase in eNOS expression and NO synthesis, thereby improving vascular homeostasis. We also found that genistein (5-10 μM) significantly inhibited TNF-α-induced apoptosis in HAECs as determined by caspase-3 activation, apoptotic cell detection and DNA laddering. The anti-apoptotic effect of genistein was associated with an enhanced expression of anti-apoptotic Bcl-2 protein and its promoter activity that was ablated by TNF-α. Moreover, this anti-apoptotic effect of genistein was not mediated by extracellular signal-regulated kinase 1/2, protein kinase A, or estrogen receptor. However, inhibition of p38 mitogen-activated protein kinase (p38) by SB203580 completely abolished the cytoprotective effect of genistein, suggesting that genistein acted through the p38-dependent pathway. Accordingly, stimulation of HAECs with genistein resulted in rapid and dose-dependent activation of p38. Unlike TNF-α which specifically activated p38α, genistein selectively induced phosphorylation of p38β, suggesting that p38β, but not p38α, is essential for the cytoprotective effect of genistein. These findings provide the evidence that genistein acts as a survival factor for vascular ECs to protect cells against apoptosis via activation of p38β. Taken together, the resuls of the present study suggest that genistein can act directly on vascular ECs, improves endothelium homeostasis by promoting eNOS expression and endothelial-derived NO synthesis through activating the cAMP/PKA/CREB cascade, and protects against TNF-α-induced apoptosis via activation of p38 β. These data potentially provide a basic mechanism underlying the physiological effects of genistein in the vasculature. / Ph. D.
392

Pathophysiology of Liver Sinusoidal Endothelial Cells

Cheluvappa, Rajkumar January 2008 (has links)
Doctor of Philosophy(PhD) / Owing to its strategic position in the liver sinusoid, pathologic and morphologic alterations of the Liver Sinusoidal Endothelial Cell (LSEC) have far-reaching repercussions for the whole liver and systemic metabolism. LSECs are perforated with fenestrations, which are pores that facilitate the transfer of lipoproteins and macromolecules between blood and hepatocytes. Loss of LSEC porosity is termed defenestration, which can result from loss of fenestrations and/ or decreases in fenestration diameter. Gram negative bacterial endotoxin (Lipopolysaccharide, LPS) has marked effects on LSEC morphology, including induction LSEC defenestration. Sepsis is associated with hyperlipidemia, and proposed mechanisms include inhibition of tissue lipoprotein lipase and increased triglyceride production by the liver. The LSEC has an increasingly recognized role in hyperlipidemia. Conditions associated with reduced numbers of fenestrations such as ageing and bacterial infections are associated with impaired lipoprotein and chylomicron remnant uptake by the liver and consequent hyperlipidemia. Given the role of the LSEC in liver allograft rejection and hyperlipidemia, changes in the LSEC induced by LPS may have significant clinical implications. In this thesis, the following major hypotheses are explored: 1. The Pseudomonas aeruginosa toxin pyocyanin induces defenestration of the LSEC both in vitro and in vivo 2. The effects of pyocyanin on the LSEC are mediated by oxidative stress 3. Defenestration induced by old age and poloxamer 407 causes intrahepatocytic hypoxia and upregulation of hypoxia-related responses 4. Defenestration of the LSEC seen in old age can be exacerbated by diabetes mellitus and prevented or ameliorated by caloric restriction commencing early in life
393

Endothelial colony forming cells (ECFCs) identification, specification and modulation in cardiovascular diseases /

Huang, Lan. January 2009 (has links)
Thesis (Ph.D.)--Indiana University, 2009. / Title from screen (viewed on February 2, 2010). Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Mervin C. Yoder, Jr., David A. Ingram, Jr., Lawrence A. Quilliam, Mark D. Pescovitz. Includes vitae. Includes bibliographical references (leaves 171-194).
394

Pathophysiology of Liver Sinusoidal Endothelial Cells

Cheluvappa, Rajkumar January 2008 (has links)
Doctor of Philosophy(PhD) / Owing to its strategic position in the liver sinusoid, pathologic and morphologic alterations of the Liver Sinusoidal Endothelial Cell (LSEC) have far-reaching repercussions for the whole liver and systemic metabolism. LSECs are perforated with fenestrations, which are pores that facilitate the transfer of lipoproteins and macromolecules between blood and hepatocytes. Loss of LSEC porosity is termed defenestration, which can result from loss of fenestrations and/ or decreases in fenestration diameter. Gram negative bacterial endotoxin (Lipopolysaccharide, LPS) has marked effects on LSEC morphology, including induction LSEC defenestration. Sepsis is associated with hyperlipidemia, and proposed mechanisms include inhibition of tissue lipoprotein lipase and increased triglyceride production by the liver. The LSEC has an increasingly recognized role in hyperlipidemia. Conditions associated with reduced numbers of fenestrations such as ageing and bacterial infections are associated with impaired lipoprotein and chylomicron remnant uptake by the liver and consequent hyperlipidemia. Given the role of the LSEC in liver allograft rejection and hyperlipidemia, changes in the LSEC induced by LPS may have significant clinical implications. In this thesis, the following major hypotheses are explored: 1. The Pseudomonas aeruginosa toxin pyocyanin induces defenestration of the LSEC both in vitro and in vivo 2. The effects of pyocyanin on the LSEC are mediated by oxidative stress 3. Defenestration induced by old age and poloxamer 407 causes intrahepatocytic hypoxia and upregulation of hypoxia-related responses 4. Defenestration of the LSEC seen in old age can be exacerbated by diabetes mellitus and prevented or ameliorated by caloric restriction commencing early in life
395

Endothelial TRPV4 dysfunction in a streptozotocin-diabetic Rat Model

Shamsaldeen, Yousif January 2016 (has links)
Diabetes mellitus is a complex disease characterised by chronic hyperglycaemia due to compromised insulin synthesis and secretion, or decreased tissue sensitivity to insulin, if not all three conditions. Endothelial dysfunction is a common complication in diabetes in which endothelium-dependent vasodilation is impaired. The aim of this study was to examine the involvement of TRPV4 in diabetes endothelial dysfunction. Male Charles River Wistar rats (350-450 g) were injected with 65mg/kg streptozotocin (STZ) intraperitoneally. STZ-injected rats were compared with naïve rats (not injected with STZ) or control rats (injected with 10ml/kg of 20mM citrate buffer, pH 4.0-4.5), if not both. Rats with blood glucose concentrations greater than 16mmol/L were considered to be diabetic. As the results revealed, STZ-diabetic rats showed significant endothelial dysfunction characterised by impaired muscarinic-induced vasodilation, as well as significant impairment in TRPV4-induced vasodilation in aortic rings and mesenteric arteries. Furthermore, STZ-diabetic primary aortic endothelial cells (ECs) showed a significant reduction in TRPV4-induced intracellular calcium ([Ca2+]i) elevation. TRPV4, endothelial nitric oxide synthase (eNOS), and caveolin-1 (CAV-1) were also significantly downregulated in STZ-diabetic primary aortic ECs and were later significantly restored by in vitro insulin treatment. Methylglyoxal (MGO) was significantly elevated in STZ-diabetic rat serum, and nondiabetic aortic rings incubated with MGO (100μM) for 12 hours showed significant endothelial dysfunction. Moreover, nondiabetic primary aortic ECs treated with MGO (100μM) for 5 days showed significant TRPV4 downregulation and significant suppression of 4-α-PDD-induced [Ca2+]i elevation, which was later restored by L-arginine (100μM) co-incubation. Incubating nondiabetic aortic rings with MGO (100μM) for 2 hours induced a spontaneous loss of noradrenaline-induced contractility persistence. Moreover, MGO induced significant [Ca2+]i elevation in Chinese hamster ovary cells expressing rat TRPM8 channels (rTRPM8), which was significantly inhibited by AMTB (1-5μM). Taken together, TRPV4, CAV-1, and eNOS can form a functional complex that is downregulated in STZ-diabetic aortic ECs and restored by insulin treatment. MGO elevation might furthermore contribute to diabetes endothelial dysfunction and TRPV4 downregulation. By contrast, MGO induced the loss of contractility persistence, possibly due to MGO's acting as a TRPM8 agonist.
396

Endothelial Colony Forming Cells (ECFCs): Identification, Specification and Modulation in Cardiovascular Diseases

Huang, Lan 02 February 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A hierarchy of endothelial colony forming cells (ECFCs) with different levels of proliferative potential has been identified in human circulating blood and blood vessels. High proliferative potential ECFCs (HPP-ECFCs) display properties (robust proliferative potential in vitro and vessel-forming ability in vivo) consistent with stem/progenitor cells for the endothelial lineage. Corneal endothelial cells (CECs) are different from circulating and resident vascular endothelial cells (ECs). Whereas systemic vascular endothelium slowly proliferates throughout life, CECs fail to proliferate in situ and merely expand in size to accommodate areas of CEC loss due to injury or senescence. However, we have identified an entire hierarchy of ECFC resident in bovine CECs. Thus, this study provides a new conceptual framework for defining corneal endothelial progenitor cell potential. The identification of persistent corneal HPP-ECFCs in adult subjects might contribute to regenerative medicine in corneal transplantation. While human cord blood derived ECFCs are able to form vessels in vivo, it is unknown whether they are committed to an arterial or venous fate. We have demonstrated that human cord blood derived ECFCs heterogeneously express gene transcripts normally restricted to arterial or venous endothelium. They can be induced to display an arterial gene expression pattern after vascular endothelial growth factor 165 (VEGF165) or Notch ligand Dll1 (Delta1ext-IgG) stimulation in vitro. However, the in vitro Dll1 primed ECFCs fail to display significant skewing toward arterial EC phenotype and function in vivo upon implantation, suggesting that in vitro priming is not sufficient for in vivo specification. Future studies will determine whether ECFCs are amenable to specification in vivo by altering the properties of the implantation microenvironment. There is emerging evidence suggesting that the concentration of circulating ECFCs is closely related to the adverse progression of cardiovascular disorders. In a pig model of acute myocardial ischemia (AMI), we have demonstrated that AMI rapidly mobilizes ECFCs into the circulation, with a significant shift toward HPP-ECFCs. The exact role of the mobilized HPP-ECFCs in homing and participation in repair of the ischemic tissue remains unknown. In summary, these studies contribute to an improved understanding of ECFCs and suggest several possible therapeutic applications of ECFCs.
397

The Role of Maternal Gestational Diabetes in Inducing Fetal Endothelial Dysfunction

Sultan, S.A., Liu, Wanting, Peng, Yonghong, Roberts, Wayne, Whitelaw, D.C., Graham, Anne M January 2015 (has links)
No / Gestational diabetes mellitus (GDM) is known to be associated with fetal endothelial dysfunction, however, the mechanisms are not fully understood. This study examines the effect of maternal diabetes on fetal endothelial function and gene expression under physiological glucose conditions (5 mM). Human umbilical vein endothelial cell (HUVEC) isolated from diabetic mothers (d.HUVEC) grew more slowly than HUVEC isolated from healthy mothers (c.HUVEC) and had delayed doubling time despite increased levels of total vascular endothelial growth factor (VEGF) expression and protein production as determined by real-time PCR and ELISA respectively. Using western blot, the levels of antiproliferative VEGF165b isoform were increased in d.HUVEC relative to c.HUVEC. Successful VEGF165b knockdown by small interfering RNA (siRNA) resulted in increased proliferation of d.HUVEC measured by MTT, compared with negative siRNA control, to similar levels measured in c.HUVEC. In addition, d.HUVEC generated excess levels of ROS as revealed by 2',7' Dichlorodihydrofluorescein Diacetate (DCFH-DA) and Nitrotetrazolium blue (NBT). Using microarray, 102 genes were differentially overexpressed between d.HUVEC versus c.HUVEC (>1.5-fold change; P < 0.05). Functional clustering analysis of these differentially expressed genes revealed participation in inflammatory responses (including adhesion) which may be related to pathological outcomes. Of these genes, ICAM-1 was validated as upregulated, confirming microarray results. Additional confirmatory immunofluorescence staining revealed increased protein expression of ICAM-1 compared with c.HUVEC which was reduced by vitamin C treatment (100 muM). Thus, maternal diabetes induces persistent alterations in fetal endothelial function and gene expression following glucose normalization and antioxidant treatment could help reverse endothelium dysfunction.
398

Effekt einer Tabakentwöhnung auf die Anzahl endothelialer Progenitorzellen und das kardiovaskuläre Risikoprofil / Effect of smoking cessation on the number of endothelial progenitor cells and cardiovascular risk profile

Steier, Jasmin 25 February 2016 (has links)
No description available.
399

Role of the plasma membrane calcium ATPase as a negative regulator of angiogenesis

Baggott, Rhiannon Rebecca January 2014 (has links)
Angiogenesis is the formation of new blood vessels from pre-existing ones. Unregulated angiogenesis is associated with several diseases such as diabetic retinopathy and tumour growth. Many signal transduction pathways have been implicated in the regulation of angiogenesis such as p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol-3 kinase (PI3K), extracellular signal-related kinase 1/2 (Erk1/2) and of particular interest the calcineurin/nuclear factor of activated T-cell (NFAT) pathway. Inhibition of calcineurin activity by the drug cyclopsorin A (CsA) has been shown to inhibit processes required for successful angiogenesis such as in vitro cell migration, tube formation and additionally attenuates corneal angiogenesis in vivo. CsA is associated with severe side effects and therefore the identification of an endogenous regulator of this pathway would be beneficial. One possibility is the plasma membrane calcium ATPases (PMCAs). These high affinity calcium extrusion pumps have been shown to interact with calcineurin in mammalian cells and cardiomyocytes and down-regulate the calcineurin/NFAT pathway. This is hypothesised to be due to the interaction between the two proteins which maintains calcineurin in a low calcium micro-environment generated by the calcium removal function of the pump. Interestingly, PMCA4 has been shown to interact with calcineurin in endothelial cells. The aim of our study was to further our understanding of PMCA4s regulation of the calcineurin/NFAT pathway specifically in endothelial cells and establish if PMCA4 has a role in the regulation of angiogenesis. ‘Gain of function’ by adenoviral over-expression of PMCA4 and ‘loss of function’ by either si-RNA mediated knockdown of PMCA4 or isolation of PMCA4-/- MLEC were used as models. Over-expression of PMCA4 in HUVEC resulted in inhibition of the calcineurin/NFAT pathway with the opposite result occurring in the case of the knockout of PMCA4, identifying PMCA4 as a negative-regulator of the calcineurin/NFAT pathway in endothelial cells. Over-expression of PMCA4 significantly attenuated VEGF-induced protein and mRNA expression of the pro-angiogenic proteins RCAN1.4 and Cox-2, endothelial cell migration and in vitro and in vivo tube formation with the opposite result occurring in knockdown or knockout studies, confirming PMCA4 as a down-regulator of angiogenesis. Interestingly, over-expression or knockdown of PMCA4 had no effect on VEGF-induced HUVEC proliferation or Erk1/2 phopshorylation proposing PMCA4 may be a potential inhibitor of angiogenesis without compromising cell survival. Disruption of the interaction between PMCA4 and calcineurin by generation and ectopic expression of an adenovirus encoding the region of PMCA4 that interacts with calcineurin (428-651) (Ad-ID4) resulted in an increase in NFAT activity, RCAN1.4 protein expression and in vitro tube formation. These results identify the mechanism of PMCA4s inhibitory effect of the calcineurin/NFAT pathway and consequently angiogenesis is a result of the interaction between the two proteins. The novel findings of this study establish PMCA4 as a negative-regulator of the calcineurin/NFAT pathway in endothelial cells and angiogenesis. These results are far reaching and highlight a potential role for PMCA4 as a therapeutic target in a variety of diseases that are associated with pathological angiogenesis.
400

Exposure of cardiac microvascular endothelial cells to harmful stimuli : a study of the cellular responses and mechanisms

Genis, Amanda 04 1900 (has links)
Thesis (PhD)-- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Exposure to harmful stimuli can render vascular endothelial cells dysfunctional, characterised by reduced nitric oxide (NO) bioavailibility. Endothelial dysfunction (ED) is a reversible precursor of ischaemic heart disease (IHD), and understanding the mechanisms underlying the development of ED could lead to clinical strategies in preventing/treating IHD. Very little is known about the responses of cardiac microvascular endothelial cells (CMECs) to pro-ED stimuli, as most studies are conducted on macrovascular endothelial cells. The current dissertation set out to comprehensively investigate the responses of cultured primary adult rat CMECs to known harmful stimuli, viz. hypoxia and tumor necrosis factor-alpha (TNF-α; proinflammatory cytokine). We were interested to investigate whether this distinct endothelial cell type would develop classical features of ED, and if so, what the underlying mechanisms were. First we aimed to establish a baseline characterization of the CMECs under control conditions. Next, we developed a model of hypoxia-induced cell injury and measured apoptosis/necrosis, intracellular NO and reactive oxygen species (ROS), expression and activation of signalling proteins involved with NObiosynthesis, hypoxia and apoptosis, and differential regulation of proteins. Finally, we characterised CMEC responses to treatment with TNF-α. We assessed apoptosis/necrosis, intracellular NO and ROS levels, NO-biosynthesis pathway proteins and large-scale differential protein regulation. The above measurements were performed by morphological assessment (light and fluorescence microscopy), FACS analysis, western blotting and large-scale proteomic analyses. Data showed that CMECs shared many baseline features with other endothelial cell types, including morphological appearance, LDL-uptake, NO-production, and expression of eNOS protein. In a novel observation, proteomic analysis revealed the expression of 1387 proteins. Another novel finding was the high abundance of structural mitochondrial proteins, suggesting that CMECs require mitochondria for non-respiration purposes as well. High expression of vesicle, glycolytic and RAS signalling proteins were other features of the baseline CMECs. CMECs exposed to hypoxia responded by increased apoptosis/necrosis and expression of the hypoxia-marker, HIF-1α. Interestingly, hypoxic CMECs showed increased eNOS-NO biosynthesis, associated with increased mitochondrial ROS and reduced anti-oxidant systems, suggestive of oxidative stress. In accordance with the literature, several glycolytic proteins were up-regulated. A novel finding was the up-regulation of proteins involved with protein synthesis, not usually described in hypoxic cell studies. The CMECs responded to TNF-α-treatment by exhibiting hallmarks of ED, namely attenuated biosynthesis of PKB/Akt-eNOSderived NO and the development of outspoken response to oxidative stress as indicated by the up-regulation of several anti-oxidant systems. The data showed that TNF-α treatment elicited classical TNF-Receptor 1-mediated signalling characterized by the dual activation of pro-apoptotic pathways (BID and caspase-3) as well as the protective, pro-inflammatory IKB-alpha–NF-KB pathway. In conclusion, this is the first study of its kind to describe a comprehensive characterisation of CMECs under baseline and injury-inducing conditions. On the whole, although it appeared as if the CMECs shared many responses and mechanisms with more frequently researched endothelial cell types, the data also supplied several novel additions to the literature, particularly with the application of proteomics. We believe that this dissertation has provided more insights into endothelial heterogeneity in the vascular system and into the mechanisms adopted by CMECs when exposed to stimuli typically associated with cardiovascular risk. / AFRIKAANSE OPSOMMING: Blootstelling aan skadelike stimuli kan tot disfunksionaliteit van vaskulêre endoteelselle lei wat deur verlaagde biobeskikbaarheid van stikstofoksied (NO) gekenmerk word. Endoteeldisfunksie (ED) is ‘n omkeerbare voorganger van isgemiese hartsiekte (IHD), en ‘n beter begrip van die onderliggende meganismes van ED kan lei tot die ontwikkeling van kliniese strategieë vir die voorkoming/behandeling van IHD. Baie min is bekend oor die respons wat in kardiale mikrovaskulêre endoteelselle (CMECs) uitgelok word na blootstelling aan pro-ED stimuli, omdat meeste studies op makrovaskulêre endoteelselle uitgevoer word. Die huidige proefskrif het daarna gemik om die respons van primêre kulture van volwasse rot CMECs op bekende skadelike stimuli, nl. hipoksie en tumor nekrose faktor-alfa (TNF-α; pro-inflammatoriese sitokien) in diepte te ondersoek. Ons was veral geïnteresseerd om vas te stel of hierdie spesifieke endoteelseltipe die klassieke kenmerke van ED sou ontwikkel, en indien wel, wat die onderliggende meganismes sou wees. Eerstens het ons beoog om ‘n basislyn karaterisering van CMECs onder kontrole toestande daar te stel. Vervolgens het ons ‘n model van hipoksie-geïnduseerde selskade gevestig en apoptose/nekrose, intrasellulêre NO en reaktiewe suurstofspesies (ROS), sowel as die uitdrukking en aktivering van proteine betrokke by NO-biosintese, hipoksie en apoptose en differensiële regulering van proteine gemeet. Laastens het ons die respons van CMECs op behandeling met TNF-α gekarakteriseer. Ons het apoptose/nekrose, intrasellulêre NO en ROS vlakke, NO-biosintese-seintransduksieproteïene en grootskaalse differensiele regulering van proteïene gemeet. Bg. metings is uitgevoer deur gebruik te maak van morfologiese evaluasie (lig -en fluoressensiemikroskopie), vloeisitometriese analises, western blot analises en proteomiese analises. Data het getoon dat die basislyn eienskappe van CMECs grootliks met dié van ander endoteelseltipes ooreenstem, insluitende morfologiese voorkoms, LDL-opname, NO-produksie en die uitdrukking van eNOS proteïen. In ‘n nuwe waarneming, het die proteomiese data die uitdrukking van 1387 proteïene aangetoon. ‘n Ander nuwe bevinding was die voorkoms van ‘n groot aantal strukturele mitokondriale proteïene, wat daarop dui dat die CMECs mitokondria ook vir nie-respiratoriese doeleindes gebruik. ‘n Hoë uitdrukking van vesikulêre, glikolitiese en RAS-seintransduksie proteïene was ook kenmerkend van die basislyn CMECs. CMECS wat aan hipoksie blootgestel is, het reageer met ‘n verhoging in apoptose / nekrose en verhoogde uitdrukking van die hipoksie merker, HIF-1α. ‘n Interressante bevinding was dat eNOS-NO biosintese sterk toegeneem het in die hipoksiese CMECs wat met verhoogde mitokondriale ROS en verlaagde anti-oksidant sisteme (aanduidend van oksidatiewe stres) gepaardgegaan het. In ooreenstemming met die literatuur, is verskeie glikolitiese proteïene opgereguleer. ‘n Nuwe waarneming was die opregulering van proteïene wat betrokke is by proteïensintese, iets wat nie normaalweg in hipoksie-studies beskryf word nie. Die CMECs het op TNF-α behandeling gerespondeer deur tekens van ED te toon, naamlik ‘n afname in die NO afkomstig van PKB/Akt-eNOS biosintese en die ontwikkeling van uitgesproke reaksie op oksidatiewe stres soos aangedui deur die opregulering van verskeie anti-oksidant sisteme. Die data het ook aangedui dat TNF-α behandeling tot klassieke TNF-reseptor 1 bemiddelde seintransduksie gelei het, wat gekenmerk was deur die tweeledige aktivering van pro-apoptotiese seintransduksiepaaie (BID en kaspase-3) sowel as die beskermende, pro-inflammatoriese IKB-alpha-NF-KB seintransduksiepad. Ten slotte: hierdie is die eerste studie van sy soort wat die kenmerke en response van CMECs onder basislyn en pro-besering omstandighede in diepte beskryf. Alhoewel dit oor die algemeen wil voorkom asof die CMECs baie in gemeen het met ander, beter nagevorste endoteelseltipes, het die data egter ook verskeie nuwe bevindinge tot die bestaande literatuur gevoeg, spesifiek die data afkomstig van die proteomiese analises. Ons glo dat hierdie proefskrif meer insig verleen t.o.v. die heterogeniteit van vaskulêre endoteelselle asook t.o.v. die megansimes wat deur CMECs aangewend word wanneer hulle aan skadelike stimuli (geassosieer met kardiovaskulêre risiko) blootgestel word.

Page generated in 0.0318 seconds