• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 662
  • 313
  • 170
  • 76
  • 50
  • 50
  • 28
  • 16
  • 16
  • 10
  • 9
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1693
  • 735
  • 457
  • 388
  • 320
  • 282
  • 231
  • 205
  • 181
  • 150
  • 138
  • 128
  • 128
  • 128
  • 127
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Kritische Rolle von Hey2 und COUP-TFII in der Notch-Signalkaskade in humanen primären arteriellen und venösen Endothelzellen

Korten, Slobodanka 09 June 2010 (has links)
Arteriosklerose führt zu schwerwiegenden klinischen Komplikationen bei Herz-Kreislauf-erkrankungen, welche die führenden Todesursachen in den westlichen Industrieländern sind. Die Arteriosklerose ist typischerweise eine Erkrankung arterieller Gefäße und betrifft nicht die venöse Gefäßwand. Bei der Entstehung von Arteriosklerose spielen die Endothelzellen als Barrierezellen und Regulatoren der Gefäßfunktion eine Schlüsselrolle. Ein wichtiger Schwerpunkt der Forschung ist die Differenzierung der Endothelzellen. Arterielle und venöse Endothelzellen weisen schon im frühen Embryonalstadium unterschiedliche Phänotypen auf. Ein besseres Verständnis der arterio-venösen Differenzierung wäre von großer Bedeutung für antiarteriosklerotische Therapien. Darüber hinaus könnte eine Reprogrammierung (z.B. von Vene in Arterie) entscheidend für neue Therapieansätze bei der Senkung der Restenoserate venöser Bypässe von Patienten mit koronarer Herzkrankheit und bei AV-Shunt-Operationen von dialysepflichtigen Patienten sein. In dieser Arbeit wurden differenzierte humane primäre arterielle und venöse Endothelzellen nach Genmodulation untersucht. Der Fokus der Genmodulation wurde auf das arterielle Markergen Hey2 und auf das venöse Markergen COUP-TFII gelegt. Das arterielle Markergen Hey2 ist ein Zielgen der Notch-Signalkaskade, während der molekulare Mechanismus der Rolle von COUP-TFII bei der venösen Differenzierung noch nicht bekannt ist. Daher wurde der Einfluss des arteriellen Markergens Hey2 und des venösen Markergens COUP-TFII auf die Notch-Signalkaskade untersucht, um ein besseres Verständnis über die molekularen Mechanismen der arterio-venösen Differenzierung zu gewinnen. Da humane primäre Endothelzellen mit kommerziell verfügbaren Transfektionsmitteln schwer transfizierbar sind, wurde zunächst ein lentivirales Vektorsystem etabliert. Hiermit wurde eine erfolgreiche und stabile Genexpression bzw. Genrepression in arteriellen und venösen Endothelzellen ermöglicht. Die Genmodulationen in arteriellen Endothelzellen, die durch die Expression des venösen Markergen COUP-TFII bzw. durch die Repression des arterellen Markergen Hey2 verursacht wurden, führten zu der neuen Erkenntnis, dass das venöse Markergen COUP-TFII in arteriellen Endothelzellen als ein Repressor des arteriellen Markergens Hey2 fungiert. Diese Repression wird durch eine direkte Bindung von COUP-TFII an den Hey2-Promotor vermittelt. Die COUP-TFII Expression bewirkte keine Veränderung in der Expression von Notch4, Dll4 und Nrp1. Dies könnte bedeuten, dass (i) COUP-TFII in arteriellen Endothelzellen kein Regulator von diesen Genen ist, (ii) Kooperationspartner von COUP-TFII fehlen, die in arteriellen Endothelzellen nicht vorhanden sind, oder (iii) der molekulare Mechanismus dieser Gene aufgrund seiner wichtigen Rolle nicht durch die Modifikation eines einzigen Gens beeinflussbar ist, da die Gene der Notch-Signalkaskade redundant kontrolliert werden. In venösen Endothelzellen wurden Genmodulationen durch Expression des arteriellen Markergens Hey2 bzw. durch die Repression des venösen Markergens COUP-TFII durchgeführt. Eine Expression des arteriellen Markergens Hey2 in venösen Endothelzellen konnte nicht die Expression der Gene der Notch-Signalkaskade aktivieren. Dies bedeutet, dass die Regulation dieser Gene durch einen übergeordneten molekularen Mechanismus gesichert ist. Interessanterweise konnte die Expression von Hey2 eine Reduktion der Hey1 Expression bewirken. Dies ist ein alternativer Effekt von Hey2 im Vergleich zu arteriellen Endothelzellen. Eine Repression des venösen Markergens COUP-TFII konnte die Expression der Gene Dll4, EphrinB2 und EphB4 induzieren. Vermutlich ist die Induktion der EphB4 Expression ein Kompensationsmechanismus auf die reduzierte COUP-TFII Expression. COUP-TFII sichert den venösen Phänotyp wahrscheinlich durch die Repression von EphrinB2 und Dll4, wobei die Reduktion von Dll4 vermutlich eine größere Bedeutung hat. Da Dll4 ein Ligand und Aktivator der Notch-Signalkaskade ist, ist seine Repression entscheidend für venöse Endothelzellen. Das arterielle Markergen Hey2 ist für die normale Embryogenese von großer Bedeutung, jedoch ist Hey2 als eines der Zielgene der Notch-Signalkaskade wahrscheinlich nicht in der Lage, molekulare Mechanismen, die zu unterschiedlichen endothelialen Phänotypen führen, zu aktivieren. Um arterielle Endothelzellen zu einem Reprogramming zu bewegen, wären wahrscheinlich Genmodulationen der Mitglieder der Notch-Signalkaskade, die upstream von Hey2 liegen, nötig. Hingegen ist die Rolle des venösen Markergens COUP-TFII in der Regulation der arterio-venösen Differenzierung von entscheidender Bedeutung. COUP-TFII spielt eine direkte Rolle in der Aufrechterhaltung der venösen Identität. Die Repression von COUP-TFII in venösen Endothelzellen bewirkt, dass sich die Expression des Gens Dll4, das die Notch-Signalkaskade aktiviert, in Richtung des arteriellen Expressionsniveaus bewegt. Für eine Reprogrammierung der venösen Endothelzellen in einen arteriellen Phänotyp ist das venöse Markergen COUP-TFII eines der Zielgene.
422

Cellules endothéliales circulantes et progéniteurs endothéliaux circulants : biomarqueurs de l'angiogénèse tumorale et des traitements anti-angiogéniques et anti-vasculaires / Circulating endothelial cells and endothelial progenition cells : biomarkers of angiogenesis and of anti-angiogenic and antivascular treatments

Taylor-Marchetti, Melissa 19 December 2012 (has links)
Malgré l’efficacité thérapeutique avérée des agents anti-angiogéniques et des agents anti-vasculaires (VDA), le mécanisme d’action précis des stratégies ciblant les vaisseaux sanguins tumoraux, les raisons de leur efficacité ainsi que les mécanismes de résistance à ces drogues sont encore mal compris. Il est rapidement apparu essentiel d’identifier des biomarqueurs capables de refléter l’angiogénèse tumorale ou les effets sur la vascularisation tumorale de ces traitements. Compte tenu de leur importance dans des pathologies vasculaires, les cellules endothéliales matures circulantes (CEC) et les progéniteurs endothéliaux circulants (CEP) ont d’emblée été pressenties comme des candidats intéressants pour être des biomarqueurs de réponse aux stratégies ciblant la vascularisation tumorale. Nous avons exploré l’intérêt de ces cellules en tant que biomarqueurs de l’angiogénèse dans des tumeurs pédiatriques, et leur rôle en tant que biomarqueurs de traitement par des agents anti-angiogéniques chez des sujets adultes atteints de cancer. Ces travaux ont mis en lumière l’intérêt des CEP et ont été à la source d’un travail plus « mécanistique » où nous avons étudié dans différents modèles murins le rôle des CEC et CEP dans le mécanisme d’action des agents anti-vasculaires et plus particulièrement le rôle fonctionnel des CEP dans la résistance à ces molécules. Par des stratégies d’association d’agents anti-angiogéniques aux VDA destinées à inhiber les CEP, nous montrons l’augmentation de l’activité anti-tumorale des VDA et offrons un rationnel mécanistique pour optimiser les schémas thérapeutiques actuels des traitements anti-vasculaires. Nos données apportent des arguments en faveur du rôle potentiel de ces cellules en tant que biomarqueurs de l’angiogénèse, des traitements anti-angiogéniques et de la résistance aux traitements anti-vasculaires. / Despite their therapeutic impact and clinical benefit, the mecanisms of action of anti-angiogenic agents and vascular disrupting agents (VDA), the reasons for their efficacy as well as the mechanisms underlying resistance to these drugs are not fully understood. Thus, identifying surrogate biomarkers of tumor angiogenesis and of the effects of these new therapeutic agents targeting tumor blood vessels has become a crucial objective. Because of their importance in vascular diseases, mature circulating endothelial cells (CEC) and circulating endothelial progenitor cells (CEP) were suggested to be potential candidate biomarkers of disease response and relapse to vascular targeting strategies. We investigated the role of these cells as biomarkers of tumor angiogenesis in pediatric solid tumors, as well as biomarkers of response to anti-angiogenic therapies in adult cancer patients. By revealing the particularly important role of CEP, these initial studies led to a more “mechanistic” study in which the cellular and molecular effects of a VDA were evaluated with regard to CEC and CEP in different mouse models; in particular, the “catalytic” role of CEP was explored as a mechanism of resistance to VDA. By combining anti-angiogenic agents aimed to inhibit CEP mobilized by the VDA, we demonstrate an increase in the anti-tumor activity of the VDA and offer a mechanistic rational to optimize VDA-based therapeutic strategies. Our data support the role of CEC and CEP as biomarkers of angiogenesis, of anti-angiogenic strategies and of resistance to vascular-disrupting therapies.
423

Molekulární podklady endotelové dysfunkce: genetické varianty endotelové syntázy oxidu dusnatého a hemoxygenázy 1. / Molecular basis of endothelial sysfunction: endothelial nitric oxide synthase and heme oxygenase 1 genetic variations

Král, Aleš January 2015 (has links)
Endothelial dysfunction is a pathologic state characterized by an altered equilibrium among vasodilatory and antithrombotic mediators and vasoconstrictive and prothrombotic mediators produced by the vascular endothelium. Multiple factors induce impaired production or increased consumption nitric oxide (NO), the key mediator of vascular homeostasis, produced by the nitric oxide synthase enzymes (NOS). Endothelial dysfunction represents one of the initial steps in the development of atherosclerosis, a chronic inflammatory disease of the vascular wall. The inducible enzyme heme oxygenase 1 (HO-1) represents one of the main cellular defense mechanisms against increased oxidative stress and decreased NO bioavailability accompanying endothelial dysfunction and atherosclerosis. We studied the genetic determinants of endothelial dysfunction and atherosclerosis by evaluating the association of the G894T endothelial NOS (eNOS) polymorphism and the HO-1 (GT)n promoter polymorphism with coronary artery atherosclerosis severity and risk profile and their evolution during hypolipidaemic treatment. In addition, we searched for genetic variations in exons 25 and 26 of eNOS gene, encoding the C-terminal part of the protein, deemed crucial for proper enzyme function and the 3'- untranslated region crucial for eNOS...
424

Endothelial Protein C Receptor : Expression in the murine kidney

Molin, Lina January 2022 (has links)
This thesis aims to investigate if the endothelial protein C receptor is expressed in the murine kidney. This was done by performing flow cytometry and Western blot analysis on cultivated murine kidney endothelial cells (mKECs) as well as SDS-PAGE and Western blot analysis on murine kidney tissue. Flow cytometry was also performed on cultivated ARPE19 and 4T1 cells for comparison. It was discovered that ≥95,5% of the mKECs, ≥93,6% of the ARPE19 cells and ≥60,9% of the 4T1 cells express the receptor according to the flow cytometry data. A dot blot was performed to validate the primary antibody used for detection of EPCR in Western blot and SDS-PAGE. According to the dot blot, the primary antibody can be visualised in the dilution range from 1:2000 to 1:10. The dot blot also showed that the secondary antibody binds specifically to the primary antibody. Yet, Western blot analysis did not detect the receptor neither in mKECs nor tissue lysate. This was likely due to the fact that the primary antibody used did not bind specifically to the receptor, and may not be applicable for this method. SDS-PAGE did not show any indication that the receptor was present in the kidney tissue. In conclusion, it was discovered that the EPCR was expressed in the murine kidneys endothelial cells through flow cytometry, but the presented methods for Western blot and SDS-PAGE could not confirm the expression of the receptor.
425

Neutrophil Extracellular Traps Promote NLRP3 Inflammasome Activation and Glomerular Endothelial Dysfunction in Diabetic Kidney Disease

Gupta, Anubhuti, Singh, Kunal, Fatima, Sameen, Ambreen, Saira, Zimmermann, Silke, Younis, Ruaa, Krishnan, Shruthi, Rana, Rajiv, Gadi, Ihsan, Schwab, Constantin, Biemann, Ronald, Shahzad, Khurrum, Rani, Vibha, Ali, Shakir, Mertens, Peter Rene, Kohli, Shrey, Isermann, Berend 02 November 2023 (has links)
Diabetes mellitus is a metabolic disease largely due to lifestyle and nutritional imbalance, resulting in insulin resistance, hyperglycemia and vascular complications. Diabetic kidney disease (DKD) is a major cause of end-stage renal failure contributing to morbidity and mortality worldwide. Therapeutic options to prevent or reverse DKD progression are limited. Endothelial and glomerular filtration barrier (GFB) dysfunction and sterile inflammation are associated with DKD. Neutrophil extracellular traps (NETs), originally identified as an innate immune mechanism to combat infection, have been implicated in sterile inflammatory responses in non-communicable diseases. However, the contribution of NETs in DKD remains unknown. Here, we show that biomarkers of NETs are increased in diabetic mice and diabetic patients and that these changes correlate with DKD severity. Mechanistically, NETs promote NLRP3 inflammasome activation and glomerular endothelial dysfunction under high glucose stress in vitro and in vivo. Inhibition of NETs (PAD4 inhibitor) ameliorate endothelial dysfunction and renal injury in DKD. Taken together, NET-induced sterile inflammation promotes diabetes-associated endothelial dysfunction, identifying a new pathomechanism contributing to DKD. Inhibition of NETs may be a promising therapeutic strategy in DKD.
426

Profile of eicosanoids produced by human saphenous vein endothelial cells and the effect of dietary fatty acids

Urquhart, Paula, Parkin, Susan M., Nicolaou, Anna 07 December 2009 (has links)
No / Human saphenous vein endothelial cells (HSVECs) derived from primary cultures of adult human veins constitute an excellent in vitro model for studying human endothelial metabolism. In this study we report the14C-labelled prostanoid profile of HSVECs under resting and stimulated conditions and the effect of the n-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid on them. Results indicate that HSVECs while under resting conditions produce mainly prostaglandin F2 ¿(PGF2 ¿). After stimulation with calcium ionophore A23187, the cells were found to synthesise PGI2, PGE2and PGF2¿as major products and thromboxane B2and PGD2as minor products. Production of14C-labelled hydroxyeicosatetraenoic acids was not detected. Eicosapentaenoic acid was found to inhibit basal and stimulated prostanoid production whereas docosahexaenoic acid inhibited basal but strongly increased stimulated prostanoid production. These results may offer the basis for further studies aiming to investigate targets for pharmacological intervention in inflammatory conditions.
427

Collective cell migration of smooth muscle and endothelial cells: impact of injury versus non-injury stimuli

Ammann, Kaitlyn R., DeCook, Katrina J., Tran, Phat L., Merkle, Valerie M., Wong, Pak K., Slepian, Marvin J. January 2015 (has links)
BACKGROUND: Cell migration is a vital process for growth and repair. In vitro migration assays, utilized to study cell migration, often rely on physical scraping of a cell monolayer to induce cell migration. The physical act of scrape injury results in numerous factors stimulating cell migration - some injury-related, some solely due to gap creation and loss of contact inhibition. Eliminating the effects of cell injury would be useful to examine the relative contribution of injury versus other mechanisms to cell migration. Cell exclusion assays can tease out the effects of injury and have become a new avenue for migration studies. Here, we developed two simple non-injury techniques for cell exclusion: 1) a Pyrex® cylinder - for outward migration of cells and 2) a polydimethylsiloxane (PDMS) insert - for inward migration of cells. Utilizing these assays smooth muscle cells (SMCs) and human umbilical vein endothelial cells (HUVECs) migratory behavior was studied on both polystyrene and gelatin-coated surfaces. RESULTS: Differences in migratory behavior could be detected for both smooth muscle cells (SMCs) and endothelial cells (ECs) when utilizing injury versus non-injury assays. SMCs migrated faster than HUVECs when stimulated by injury in the scrape wound assay, with rates of 1.26 % per hour and 1.59 % per hour on polystyrene and gelatin surfaces, respectively. The fastest overall migration took place with HUVECs on a gelatin-coated surface, with the in-growth assay, at a rate of 2.05 % per hour. The slowest migration occurred with the same conditions but on a polystyrene surface at a rate of 0.33 % per hour. CONCLUSION: For SMCs, injury is a dominating factor in migration when compared to the two cell exclusion assays, regardless of the surface tested: polystyrene or gelatin. In contrast, the migrating surface, namely gelatin, was a dominating factor for HUVEC migration, providing an increase in cell migration over the polystyrene surface. Overall, the cell exclusion assays - the in-growth and out-growth assays, provide a means to determine pure migratory behavior of cells in comparison to migration confounded by cell wounding and injury.
428

Der Einfluss körperlichen Ausdauertrainings auf die HDL-Funktion bei Patienten mit chronischer Herzinsuffizienz

Noack, Friederike 09 May 2016 (has links) (PDF)
Die chronische Herzinsuffizienz gehört zu den häufigsten internistischen Krankheitsbildern in Europa. Eine wichtige Rolle in der Therapie der chronischen Herzinsuffizienz spielt das moderate körperliche Ausdauertraining. HDL ist als Vasoprotektor bekannt und ist in der Lage, über die Regulation der endothelialen Stickstoffmonoxidsynthase (eNOS) die Dilatationsfähigkeit von Gefäßen zu regulieren. Da eine gestörte Endothelfunktion verbunden mit einer geringeren eNOS-Expression einen wichtigen Aspekt in der Pathophysiologie der Herzinsuffizienz darstellt, war das Ziel dieser Arbeit zunächst, die HDL-induzierte eNOS-Aktivierung und NO-Produktion in Endothelzellen bei chronisch Herzinsuffizienten mit der von Gesunden zu vergleichen. Des Weiteren wurde der Einfluss körperlichen Ausdauertrainings auf die HDL-Funktion bei chronischer Herzinsuffizienz untersucht. Dafür wurde HDL jeweils aus Blutserum von herzgesunden Probanden und Herzinsuffizienten vor und nach körperlichem Ausdauertraining isoliert. Damit wurden humane aortale Endothelzellen inkubiert und anschließend mittels Western Blot die HDL-induzierte Phosphorylierung der endothelialen Stickstoffmonoxidsynthase (Regulation der eNOS-Aktivierung), der Proteinkinase C-βII sowie der p70S6K ermittelt. Des Weiteren wurde ESR-spektroskopisch die HDL-induzierte NO-Produktion in Endothelzellen gemessen. Letztendlich bestand die Frage, worin der Unterschied zwischen HDL von Gesunden und HDL von Herzinsuffizienten besteht, der die funktionalen Differenzen erklären kann. Dazu wurde die Menge des HDL-gebundenen Malondialdehyds ermittelt. Die Endothelfunktion wurde sonographisch als Fluss-vermittelte Vasodilatation bestimmt. Die Ergebnisse der Untersuchungen belegen, dass die HDL-induzierte eNOS-Aktivierung bei Patienten mit chronischer Herzinsuffizienz im Vergleich zu Gesunden vermindert ist. Des Weiteren kann der Einfluss von HDL auf die eNOS-Aktivierung durch körperliches Ausdauertraining bei Patienten mit chronischer Herzinsuffizienz verbessert werden. Die Verbesserung der HDL-induzierten NO-Produktion korreliert dabei mit der verbesserten Fluss-vermittelten Vasodilatation. Als Unterschied zwischen HDL von Gesunden und dem von chronisch Herzinsuffizienten konnte bei den Letztgenannten eine höhere Menge von gebundenem Malondialdehyd nachgewiesen werden.
429

Mechanisms by which p53 Regulates Radiation-induced Carcinogenesis and Myocardial Injury

Lee, Chang-Lung January 2012 (has links)
<p>Radiation therapy can cause acute toxicity and long-term side effects in normal tissues. Because part of the acute toxicity of radiation is due to p53-mediated apoptosis, blocking p53 during irradiation can protect some normal tissues from acute radiation injury and might improve the therapeutic ratio of radiation therapy. However, the mechanisms by which p53 regulates late effects of radiation are not well understood. Here, I utilized genetically engineered mouse models to dissect the role of p53 in regulating two of the most clinically significant late effects of radiation: radiation-induced carcinogenesis and radiation-induced myocardial injury. </p><p> It has been well characterized that mice with one allele of p53 permanently deleted are sensitized to radiation-induced cancer. Therefore, temporary inhibition of blocking p53 during irradiation could promote malignant transformation. Experiments with mice lacking functional p53 in which p53 protein can be temporarily restored during total-body irradiation (TBI) suggest that the radiation-induced p53 response does not contribute to p53-mediated tumor suppression. Here, I performed reciprocal experiments and temporarily turned p53 off during TBI using transgenic mice with reversible RNA interference against p53. I found that temporary knockdown of p53 during TBI not only ameliorated acute hematopoietic toxicity, but in both Kras wild-type and tumor-prone KrasLA1 mice also prevented lymphoma development. Mechanistic studies show that p53 knockdown during TBI improves survival of hematopoietic stem and progenitor cells (HSPCs), which maintains HSPC quiescence and prevents accelerated repopulation of surviving cells. Moreover, using an in vivo competition assay I found that temporary knockdown of p53 during TBI maintains the fitness of p53 wild-type HSPCs to prevent the expansion of irradiated mutant cells. Taken together, our data demonstrate that p53 functions during TBI to promote lymphoma formation by facilitating the expansion of irradiated HSPCs with adaptive mutations. </p><p> p53 functions in the heart to promote myocardial injury after multiple types of stress, including ischemic injury, pressure overload and doxorubicin-induced oxidative stress. However, how p53 regulates radiation-induced myocardial injury, which develops after radiation therapy, is not well understood. Here, I utilized the Cre-loxP system to demonstrate that p53 functions in endothelial cells to protect mice from myocardial injury after a single dose of 12 Gy or 10 daily fractions of 3 Gy whole-heart irradiation (WHI). Mice in which both alleles of p53 are deleted in endothelial cells succumbed to heart failure after WHI due to myocardial necrosis, systolic dysfunction and cardiac hypertrophy. Moreover, the onset of cardiac dysfunction was preceded by alterations in myocardial vascular permeability and density. Mechanistic studies using primary cardiac endothelial cells (CECs) irradiated in vitro indicate that p53 signals to cause a mitotic arrest and protects CECs against radiation-induced mitotic catastrophe. Furthermore, mice lacking the cyclin-dependent kinase inhibitor p21, which is a transcriptional target of p53, are also sensitized to myocardial injury after 12 Gy WHI. Together, our results demonstrate that the p53/p21 axis functions to prevent radiation-induced myocardial injury in mice. Our findings raise the possibility that when combining radiation therapy with inhibitors of p53 or other components of the DNA damage response that regulate mitotic arrest, patients may experience increased radiation-related heart disease. </p><p> Taken together, our results demonstrate crucial but distinct roles of p53 in regulating late effects of radiation: p53-mediated apoptosis promotes radiation-induced lymphomagenesis, but p53-mediated cell cycle arrest prevents radiation-induced myocardial injury. These findings indicate that p53 may generally play a protective role from radiation, particularly at high doses, in cells where p53 activation is uncoupled from the induction of the intrinsic pathway of apoptosis. Therefore, selectively inhibiting p53-mediated apoptosis may be a promising approach to ameliorate acute radiation toxicity without exacerbating late effects of radiation.</p> / Dissertation
430

Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans

Rast, Timothy J., Kullas, Amy L., Southern, Peter J., Davis, Dana A. 18 April 2016 (has links)
The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage.

Page generated in 0.0886 seconds